Optimal. Leaf size=22 \[ x^{\left (e^4+4 e^{5-x}\right ) x}-\log (x) \]
________________________________________________________________________________________
Rubi [F] time = 1.47, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1+x^{e^4 x+4 e^{5-x} x} \left (e^4 x+4 e^{5-x} x+\left (e^4 x+4 e^{5-x} \left (x-x^2\right )\right ) \log (x)\right )}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {1}{x}+e^{4-x} x^{e^{4-x} \left (4 e+e^x\right ) x} \left (4 e+e^x+4 e \log (x)+e^x \log (x)-4 e x \log (x)\right )\right ) \, dx\\ &=-\log (x)+\int e^{4-x} x^{e^{4-x} \left (4 e+e^x\right ) x} \left (4 e+e^x+4 e \log (x)+e^x \log (x)-4 e x \log (x)\right ) \, dx\\ &=-\log (x)+\int \left (e^4 x^{e^{4-x} \left (4 e+e^x\right ) x}+4 e^{5-x} x^{e^{4-x} \left (4 e+e^x\right ) x}+e^4 x^{e^{4-x} \left (4 e+e^x\right ) x} \log (x)+4 e^{5-x} x^{e^{4-x} \left (4 e+e^x\right ) x} \log (x)-4 e^{5-x} x^{1+e^{4-x} \left (4 e+e^x\right ) x} \log (x)\right ) \, dx\\ &=-\log (x)+4 \int e^{5-x} x^{e^{4-x} \left (4 e+e^x\right ) x} \, dx+4 \int e^{5-x} x^{e^{4-x} \left (4 e+e^x\right ) x} \log (x) \, dx-4 \int e^{5-x} x^{1+e^{4-x} \left (4 e+e^x\right ) x} \log (x) \, dx+e^4 \int x^{e^{4-x} \left (4 e+e^x\right ) x} \, dx+e^4 \int x^{e^{4-x} \left (4 e+e^x\right ) x} \log (x) \, dx\\ &=-\log (x)+4 \int e^{5-x} x^{e^{4-x} \left (4 e+e^x\right ) x} \, dx-4 \int \frac {\int e^{5-x} x^{e^{4-x} \left (4 e+e^x\right ) x} \, dx}{x} \, dx+4 \int \frac {\int e^{5-x} x^{1+e^4 x+4 e^{5-x} x} \, dx}{x} \, dx+e^4 \int x^{e^{4-x} \left (4 e+e^x\right ) x} \, dx-e^4 \int \frac {\int x^{e^{4-x} \left (4 e+e^x\right ) x} \, dx}{x} \, dx+(4 \log (x)) \int e^{5-x} x^{e^{4-x} \left (4 e+e^x\right ) x} \, dx-(4 \log (x)) \int e^{5-x} x^{1+e^{4-x} \left (4 e+e^x\right ) x} \, dx+\left (e^4 \log (x)\right ) \int x^{e^{4-x} \left (4 e+e^x\right ) x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.51, size = 23, normalized size = 1.05 \begin {gather*} x^{e^4 \left (1+4 e^{1-x}\right ) x}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 24, normalized size = 1.09 \begin {gather*} x^{x e^{4} + x e^{\left (-x + 2 \, \log \relax (2) + 5\right )}} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x e^{4} + x e^{\left (-x + 2 \, \log \relax (2) + 5\right )} + {\left (x e^{4} - {\left (x^{2} - x\right )} e^{\left (-x + 2 \, \log \relax (2) + 5\right )}\right )} \log \relax (x)\right )} x^{x e^{4} + x e^{\left (-x + 2 \, \log \relax (2) + 5\right )}} - 1}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 21, normalized size = 0.95
method | result | size |
risch | \(x^{\left ({\mathrm e}^{4}+4 \,{\mathrm e}^{5-x}\right ) x}-\ln \relax (x )\) | \(21\) |
default | \({\mathrm e}^{\left (x \,{\mathrm e}^{2 \ln \relax (2)+5-x}+x \,{\mathrm e}^{4}\right ) \ln \relax (x )}-\ln \relax (x )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 24, normalized size = 1.09 \begin {gather*} e^{\left (x e^{4} \log \relax (x) + 4 \, x e^{\left (-x + 5\right )} \log \relax (x)\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.53, size = 23, normalized size = 1.05 \begin {gather*} x^{x\,{\mathrm {e}}^4}\,x^{4\,x\,{\mathrm {e}}^{5-x}}-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.54, size = 20, normalized size = 0.91 \begin {gather*} e^{\left (4 x e^{5 - x} + x e^{4}\right ) \log {\relax (x )}} - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________