Optimal. Leaf size=19 \[ 4 \left (5+2 x+\frac {x}{\log \left (e^x+x+\log (4)\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x-4 e^x x+\left (4 e^x+4 x+4 \log (4)\right ) \log \left (e^x+x+\log (4)\right )+\left (8 e^x+8 x+8 \log (4)\right ) \log ^2\left (e^x+x+\log (4)\right )}{\left (e^x+x+\log (4)\right ) \log ^2\left (e^x+x+\log (4)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (8-\frac {4 \left (1+e^x\right ) x}{\left (e^x+x+\log (4)\right ) \log ^2\left (e^x+x+\log (4)\right )}+\frac {4}{\log \left (e^x+x+\log (4)\right )}\right ) \, dx\\ &=8 x-4 \int \frac {\left (1+e^x\right ) x}{\left (e^x+x+\log (4)\right ) \log ^2\left (e^x+x+\log (4)\right )} \, dx+4 \int \frac {1}{\log \left (e^x+x+\log (4)\right )} \, dx\\ &=8 x-4 \int \left (\frac {x}{\log ^2\left (e^x+x+\log (4)\right )}-\frac {x (-1+x+\log (4))}{\left (e^x+x+\log (4)\right ) \log ^2\left (e^x+x+\log (4)\right )}\right ) \, dx+4 \int \frac {1}{\log \left (e^x+x+\log (4)\right )} \, dx\\ &=8 x-4 \int \frac {x}{\log ^2\left (e^x+x+\log (4)\right )} \, dx+4 \int \frac {x (-1+x+\log (4))}{\left (e^x+x+\log (4)\right ) \log ^2\left (e^x+x+\log (4)\right )} \, dx+4 \int \frac {1}{\log \left (e^x+x+\log (4)\right )} \, dx\\ &=8 x+4 \int \left (\frac {x^2}{\left (e^x+x+\log (4)\right ) \log ^2\left (e^x+x+\log (4)\right )}+\frac {x (-1+\log (4))}{\left (e^x+x+\log (4)\right ) \log ^2\left (e^x+x+\log (4)\right )}\right ) \, dx-4 \int \frac {x}{\log ^2\left (e^x+x+\log (4)\right )} \, dx+4 \int \frac {1}{\log \left (e^x+x+\log (4)\right )} \, dx\\ &=8 x-4 \int \frac {x}{\log ^2\left (e^x+x+\log (4)\right )} \, dx+4 \int \frac {x^2}{\left (e^x+x+\log (4)\right ) \log ^2\left (e^x+x+\log (4)\right )} \, dx+4 \int \frac {1}{\log \left (e^x+x+\log (4)\right )} \, dx+(4 (-1+\log (4))) \int \frac {x}{\left (e^x+x+\log (4)\right ) \log ^2\left (e^x+x+\log (4)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 17, normalized size = 0.89 \begin {gather*} 8 x+\frac {4 x}{\log \left (e^x+x+\log (4)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 27, normalized size = 1.42 \begin {gather*} \frac {4 \, {\left (2 \, x \log \left (x + e^{x} + 2 \, \log \relax (2)\right ) + x\right )}}{\log \left (x + e^{x} + 2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 27, normalized size = 1.42 \begin {gather*} \frac {4 \, {\left (2 \, x \log \left (x + e^{x} + 2 \, \log \relax (2)\right ) + x\right )}}{\log \left (x + e^{x} + 2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 19, normalized size = 1.00
method | result | size |
risch | \(8 x +\frac {4 x}{\ln \left ({\mathrm e}^{x}+x +2 \ln \relax (2)\right )}\) | \(19\) |
norman | \(\frac {4 x +8 \ln \left ({\mathrm e}^{x}+x +2 \ln \relax (2)\right ) x}{\ln \left ({\mathrm e}^{x}+x +2 \ln \relax (2)\right )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 27, normalized size = 1.42 \begin {gather*} \frac {4 \, {\left (2 \, x \log \left (x + e^{x} + 2 \, \log \relax (2)\right ) + x\right )}}{\log \left (x + e^{x} + 2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F(-1)] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \text {Hanged} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 17, normalized size = 0.89 \begin {gather*} 8 x + \frac {4 x}{\log {\left (x + e^{x} + 2 \log {\relax (2 )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________