Optimal. Leaf size=19 \[ \left (e^x+e x\right ) \left (-4+3 \left (-3+x^2\right )+\log (16)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 35, normalized size of antiderivative = 1.84, number of steps used = 10, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {2196, 2176, 2194} \begin {gather*} 3 e x^3+3 e^x x^2-13 e x+e x \log (16)-e^x (13-\log (16)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e x \log (16)+e \int \left (-13+9 x^2\right ) \, dx+\int e^x \left (-13+6 x+3 x^2+\log (16)\right ) \, dx\\ &=-13 e x+3 e x^3+e x \log (16)+\int \left (6 e^x x+3 e^x x^2-13 e^x \left (1-\frac {4 \log (2)}{13}\right )\right ) \, dx\\ &=-13 e x+3 e x^3+e x \log (16)+3 \int e^x x^2 \, dx+6 \int e^x x \, dx-(13-4 \log (2)) \int e^x \, dx\\ &=-13 e x+6 e^x x+3 e^x x^2+3 e x^3-e^x (13-4 \log (2))+e x \log (16)-6 \int e^x \, dx-6 \int e^x x \, dx\\ &=-6 e^x-13 e x+3 e^x x^2+3 e x^3-e^x (13-4 \log (2))+e x \log (16)+6 \int e^x \, dx\\ &=-13 e x+3 e^x x^2+3 e x^3-e^x (13-4 \log (2))+e x \log (16)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 27, normalized size = 1.42 \begin {gather*} 3 e x^3+e x (-13+\log (16))+e^x \left (-13+3 x^2+\log (16)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 34, normalized size = 1.79 \begin {gather*} 4 \, x e \log \relax (2) + {\left (3 \, x^{3} - 13 \, x\right )} e + {\left (3 \, x^{2} + 4 \, \log \relax (2) - 13\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 34, normalized size = 1.79 \begin {gather*} 4 \, x e \log \relax (2) + {\left (3 \, x^{3} - 13 \, x\right )} e + {\left (3 \, x^{2} + 4 \, \log \relax (2) - 13\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 35, normalized size = 1.84
method | result | size |
risch | \(\left (4 \ln \relax (2)+3 x^{2}-13\right ) {\mathrm e}^{x}+4 x \,{\mathrm e} \ln \relax (2)+3 x^{3} {\mathrm e}-13 x \,{\mathrm e}\) | \(35\) |
default | \(3 \,{\mathrm e}^{x} x^{2}+4 \,{\mathrm e}^{x} \ln \relax (2)-13 \,{\mathrm e}^{x}+{\mathrm e} \left (3 x^{3}-13 x \right )+4 x \,{\mathrm e} \ln \relax (2)\) | \(38\) |
norman | \(\left (4 \,{\mathrm e} \ln \relax (2)-13 \,{\mathrm e}\right ) x +\left (4 \ln \relax (2)-13\right ) {\mathrm e}^{x}+3 x^{3} {\mathrm e}+3 \,{\mathrm e}^{x} x^{2}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 34, normalized size = 1.79 \begin {gather*} 4 \, x e \log \relax (2) + {\left (3 \, x^{3} - 13 \, x\right )} e + {\left (3 \, x^{2} + 4 \, \log \relax (2) - 13\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 36, normalized size = 1.89 \begin {gather*} {\mathrm {e}}^x\,\left (\ln \left (16\right )-13\right )+3\,x^2\,{\mathrm {e}}^x-x\,\left (13\,\mathrm {e}-4\,\mathrm {e}\,\ln \relax (2)\right )+3\,x^3\,\mathrm {e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 37, normalized size = 1.95 \begin {gather*} 3 e x^{3} + x \left (- 13 e + 4 e \log {\relax (2 )}\right ) + \left (3 x^{2} - 13 + 4 \log {\relax (2 )}\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________