Optimal. Leaf size=18 \[ 12+\frac {5 x}{3}+\frac {\log (x)}{10 (2+x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.23, antiderivative size = 24, normalized size of antiderivative = 1.33, number of steps used = 13, number of rules used = 8, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.216, Rules used = {1594, 27, 12, 6742, 44, 43, 2314, 31} \begin {gather*} \frac {5 x}{3}-\frac {x \log (x)}{20 (x+2)}+\frac {\log (x)}{20} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 31
Rule 43
Rule 44
Rule 1594
Rule 2314
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6+203 x+200 x^2+50 x^3-3 x \log (x)}{x \left (120+120 x+30 x^2\right )} \, dx\\ &=\int \frac {6+203 x+200 x^2+50 x^3-3 x \log (x)}{30 x (2+x)^2} \, dx\\ &=\frac {1}{30} \int \frac {6+203 x+200 x^2+50 x^3-3 x \log (x)}{x (2+x)^2} \, dx\\ &=\frac {1}{30} \int \left (\frac {203}{(2+x)^2}+\frac {6}{x (2+x)^2}+\frac {200 x}{(2+x)^2}+\frac {50 x^2}{(2+x)^2}-\frac {3 \log (x)}{(2+x)^2}\right ) \, dx\\ &=-\frac {203}{30 (2+x)}-\frac {1}{10} \int \frac {\log (x)}{(2+x)^2} \, dx+\frac {1}{5} \int \frac {1}{x (2+x)^2} \, dx+\frac {5}{3} \int \frac {x^2}{(2+x)^2} \, dx+\frac {20}{3} \int \frac {x}{(2+x)^2} \, dx\\ &=-\frac {203}{30 (2+x)}-\frac {x \log (x)}{20 (2+x)}+\frac {1}{20} \int \frac {1}{2+x} \, dx+\frac {1}{5} \int \left (\frac {1}{4 x}-\frac {1}{2 (2+x)^2}-\frac {1}{4 (2+x)}\right ) \, dx+\frac {5}{3} \int \left (1+\frac {4}{(2+x)^2}-\frac {4}{2+x}\right ) \, dx+\frac {20}{3} \int \left (-\frac {2}{(2+x)^2}+\frac {1}{2+x}\right ) \, dx\\ &=\frac {5 x}{3}+\frac {\log (x)}{20}-\frac {x \log (x)}{20 (2+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 17, normalized size = 0.94 \begin {gather*} \frac {1}{30} \left (50 x+\frac {3 \log (x)}{2+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.13, size = 20, normalized size = 1.11 \begin {gather*} \frac {50 \, x^{2} + 100 \, x + 3 \, \log \relax (x)}{30 \, {\left (x + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 13, normalized size = 0.72 \begin {gather*} \frac {5}{3} \, x + \frac {\log \relax (x)}{10 \, {\left (x + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 14, normalized size = 0.78
method | result | size |
risch | \(\frac {\ln \relax (x )}{10 x +20}+\frac {5 x}{3}\) | \(14\) |
norman | \(\frac {\frac {\ln \relax (x )}{10}+\frac {5 x^{2}}{3}-\frac {20}{3}}{2+x}\) | \(18\) |
default | \(\frac {5 x}{3}+\frac {\ln \relax (x )}{20}-\frac {\ln \relax (x ) x}{20 \left (2+x \right )}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 13, normalized size = 0.72 \begin {gather*} \frac {5}{3} \, x + \frac {\log \relax (x)}{10 \, {\left (x + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.38, size = 14, normalized size = 0.78 \begin {gather*} \frac {5\,x}{3}+\frac {\ln \relax (x)}{10\,\left (x+2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 12, normalized size = 0.67 \begin {gather*} \frac {5 x}{3} + \frac {\log {\relax (x )}}{10 x + 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________