Optimal. Leaf size=34 \[ 3 \left (6-2^{-2+\frac {1}{\frac {5}{x}-x}} x-\frac {x}{-x+x^2}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 1.76, antiderivative size = 250, normalized size of antiderivative = 7.35, number of steps used = 24, number of rules used = 11, integrand size = 115, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.096, Rules used = {6741, 12, 6688, 6742, 741, 801, 633, 31, 1647, 1629, 2288} \begin {gather*} -\frac {15 (x+5)}{8 (1-x) \left (5-x^2\right )}-\frac {15 (3 x+5)}{16 \left (5-x^2\right )}-\frac {3\ 2^{\frac {x}{5-x^2}-2} \left (x^3 \log (2)+x \log (32)\right )}{\left (5-x^2\right )^2 \left (\frac {2 x^2}{\left (5-x^2\right )^2}+\frac {1}{5-x^2}\right ) \log (2)}+\frac {93}{16 (1-x)}-\frac {3}{32} \left (25+13 \sqrt {5}\right ) \log \left (\sqrt {5}-x\right )+\frac {3}{16} \left (15+7 \sqrt {5}\right ) \log \left (\sqrt {5}-x\right )-\frac {3}{32} \left (5+\sqrt {5}\right ) \log \left (\sqrt {5}-x\right )-\frac {3}{32} \left (5-\sqrt {5}\right ) \log \left (x+\sqrt {5}\right )+\frac {3}{16} \left (15-7 \sqrt {5}\right ) \log \left (x+\sqrt {5}\right )-\frac {3}{32} \left (25-13 \sqrt {5}\right ) \log \left (x+\sqrt {5}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rule 633
Rule 741
Rule 801
Rule 1629
Rule 1647
Rule 2288
Rule 6688
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {300-120 x^2+12 x^4+2^{-\frac {x}{-5+x^2}} \left (-75+150 x-45 x^2-60 x^3+27 x^4+6 x^5-3 x^6+\left (-15 x+30 x^2-18 x^3+6 x^4-3 x^5\right ) \log (2)\right )}{4 \left (5-5 x-x^2+x^3\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {300-120 x^2+12 x^4+2^{-\frac {x}{-5+x^2}} \left (-75+150 x-45 x^2-60 x^3+27 x^4+6 x^5-3 x^6+\left (-15 x+30 x^2-18 x^3+6 x^4-3 x^5\right ) \log (2)\right )}{\left (5-5 x-x^2+x^3\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {300-120 x^2+12 x^4-3\ 2^{-\frac {x}{-5+x^2}} (-1+x)^2 \left (25-10 x^2+x^4+x^3 \log (2)+x \log (32)\right )}{\left (5-5 x-x^2+x^3\right )^2} \, dx\\ &=\frac {1}{4} \int \left (\frac {300}{(-1+x)^2 \left (-5+x^2\right )^2}-\frac {120 x^2}{(-1+x)^2 \left (-5+x^2\right )^2}+\frac {12 x^4}{(-1+x)^2 \left (-5+x^2\right )^2}-\frac {3\ 2^{-\frac {x}{-5+x^2}} \left (25-10 x^2+x^4+x^3 \log (2)+x \log (32)\right )}{\left (-5+x^2\right )^2}\right ) \, dx\\ &=-\left (\frac {3}{4} \int \frac {2^{-\frac {x}{-5+x^2}} \left (25-10 x^2+x^4+x^3 \log (2)+x \log (32)\right )}{\left (-5+x^2\right )^2} \, dx\right )+3 \int \frac {x^4}{(-1+x)^2 \left (-5+x^2\right )^2} \, dx-30 \int \frac {x^2}{(-1+x)^2 \left (-5+x^2\right )^2} \, dx+75 \int \frac {1}{(-1+x)^2 \left (-5+x^2\right )^2} \, dx\\ &=-\frac {15 (5+x)}{8 (1-x) \left (5-x^2\right )}-\frac {15 (5+3 x)}{16 \left (5-x^2\right )}-\frac {3\ 2^{-2+\frac {x}{5-x^2}} \left (x^3 \log (2)+x \log (32)\right )}{\left (5-x^2\right )^2 \left (\frac {2 x^2}{\left (5-x^2\right )^2}+\frac {1}{5-x^2}\right ) \log (2)}+\frac {3}{10} \int \frac {\frac {75}{8}-\frac {25 x}{2}+\frac {5 x^2}{8}}{(-1+x)^2 \left (-5+x^2\right )} \, dx-\frac {15}{8} \int \frac {14+2 x}{(-1+x)^2 \left (-5+x^2\right )} \, dx-3 \int \frac {\frac {15}{8}-\frac {5 x}{2}-\frac {15 x^2}{8}}{(-1+x)^2 \left (-5+x^2\right )} \, dx\\ &=-\frac {15 (5+x)}{8 (1-x) \left (5-x^2\right )}-\frac {15 (5+3 x)}{16 \left (5-x^2\right )}-\frac {3\ 2^{-2+\frac {x}{5-x^2}} \left (x^3 \log (2)+x \log (32)\right )}{\left (5-x^2\right )^2 \left (\frac {2 x^2}{\left (5-x^2\right )^2}+\frac {1}{5-x^2}\right ) \log (2)}+\frac {3}{10} \int \left (\frac {5}{8 (-1+x)^2}+\frac {25}{8 (-1+x)}-\frac {25 (1+x)}{8 \left (-5+x^2\right )}\right ) \, dx-\frac {15}{8} \int \left (-\frac {4}{(-1+x)^2}-\frac {5}{2 (-1+x)}+\frac {13+5 x}{2 \left (-5+x^2\right )}\right ) \, dx-3 \int \left (\frac {5}{8 (-1+x)^2}+\frac {15}{8 (-1+x)}-\frac {5 (7+3 x)}{8 \left (-5+x^2\right )}\right ) \, dx\\ &=\frac {93}{16 (1-x)}-\frac {15 (5+x)}{8 (1-x) \left (5-x^2\right )}-\frac {15 (5+3 x)}{16 \left (5-x^2\right )}-\frac {3\ 2^{-2+\frac {x}{5-x^2}} \left (x^3 \log (2)+x \log (32)\right )}{\left (5-x^2\right )^2 \left (\frac {2 x^2}{\left (5-x^2\right )^2}+\frac {1}{5-x^2}\right ) \log (2)}-\frac {15}{16} \int \frac {1+x}{-5+x^2} \, dx-\frac {15}{16} \int \frac {13+5 x}{-5+x^2} \, dx+\frac {15}{8} \int \frac {7+3 x}{-5+x^2} \, dx\\ &=\frac {93}{16 (1-x)}-\frac {15 (5+x)}{8 (1-x) \left (5-x^2\right )}-\frac {15 (5+3 x)}{16 \left (5-x^2\right )}-\frac {3\ 2^{-2+\frac {x}{5-x^2}} \left (x^3 \log (2)+x \log (32)\right )}{\left (5-x^2\right )^2 \left (\frac {2 x^2}{\left (5-x^2\right )^2}+\frac {1}{5-x^2}\right ) \log (2)}-\frac {1}{32} \left (3 \left (25-13 \sqrt {5}\right )\right ) \int \frac {1}{\sqrt {5}+x} \, dx+\frac {1}{16} \left (3 \left (15-7 \sqrt {5}\right )\right ) \int \frac {1}{\sqrt {5}+x} \, dx-\frac {1}{32} \left (3 \left (5-\sqrt {5}\right )\right ) \int \frac {1}{\sqrt {5}+x} \, dx-\frac {1}{32} \left (3 \left (5+\sqrt {5}\right )\right ) \int \frac {1}{-\sqrt {5}+x} \, dx+\frac {1}{16} \left (3 \left (15+7 \sqrt {5}\right )\right ) \int \frac {1}{-\sqrt {5}+x} \, dx-\frac {1}{32} \left (3 \left (25+13 \sqrt {5}\right )\right ) \int \frac {1}{-\sqrt {5}+x} \, dx\\ &=\frac {93}{16 (1-x)}-\frac {15 (5+x)}{8 (1-x) \left (5-x^2\right )}-\frac {15 (5+3 x)}{16 \left (5-x^2\right )}-\frac {3\ 2^{-2+\frac {x}{5-x^2}} \left (x^3 \log (2)+x \log (32)\right )}{\left (5-x^2\right )^2 \left (\frac {2 x^2}{\left (5-x^2\right )^2}+\frac {1}{5-x^2}\right ) \log (2)}-\frac {3}{32} \left (5+\sqrt {5}\right ) \log \left (\sqrt {5}-x\right )+\frac {3}{16} \left (15+7 \sqrt {5}\right ) \log \left (\sqrt {5}-x\right )-\frac {3}{32} \left (25+13 \sqrt {5}\right ) \log \left (\sqrt {5}-x\right )-\frac {3}{32} \left (25-13 \sqrt {5}\right ) \log \left (\sqrt {5}+x\right )+\frac {3}{16} \left (15-7 \sqrt {5}\right ) \log \left (\sqrt {5}+x\right )-\frac {3}{32} \left (5-\sqrt {5}\right ) \log \left (\sqrt {5}+x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.40, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {300-120 x^2+12 x^4+2^{-\frac {x}{-5+x^2}} \left (-75+150 x-45 x^2-60 x^3+27 x^4+6 x^5-3 x^6+\left (-15 x+30 x^2-18 x^3+6 x^4-3 x^5\right ) \log (2)\right )}{100-200 x+60 x^2+80 x^3-36 x^4-8 x^5+4 x^6} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 40, normalized size = 1.18 \begin {gather*} -\frac {3 \, {\left (x^{2} + 4 \cdot 2^{\frac {x}{x^{2} - 5}} - x\right )}}{4 \cdot 2^{\frac {x}{x^{2} - 5}} {\left (x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {3 \, {\left (4 \, x^{4} - 40 \, x^{2} - \frac {x^{6} - 2 \, x^{5} - 9 \, x^{4} + 20 \, x^{3} + 15 \, x^{2} + {\left (x^{5} - 2 \, x^{4} + 6 \, x^{3} - 10 \, x^{2} + 5 \, x\right )} \log \relax (2) - 50 \, x + 25}{2^{\frac {x}{x^{2} - 5}}} + 100\right )}}{4 \, {\left (x^{6} - 2 \, x^{5} - 9 \, x^{4} + 20 \, x^{3} + 15 \, x^{2} - 50 \, x + 25\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 23, normalized size = 0.68
method | result | size |
risch | \(-\frac {3}{x -1}-\frac {3 \left (\frac {1}{2}\right )^{\frac {x}{x^{2}-5}} x}{4}\) | \(23\) |
norman | \(\frac {-3 x^{2}+15-\frac {15 \,{\mathrm e}^{-\frac {x \ln \relax (2)}{x^{2}-5}} x}{4}+\frac {15 \,{\mathrm e}^{-\frac {x \ln \relax (2)}{x^{2}-5}} x^{2}}{4}+\frac {3 \,{\mathrm e}^{-\frac {x \ln \relax (2)}{x^{2}-5}} x^{3}}{4}-\frac {3 \,{\mathrm e}^{-\frac {x \ln \relax (2)}{x^{2}-5}} x^{4}}{4}}{x^{3}-x^{2}-5 x +5}\) | \(94\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 94, normalized size = 2.76 \begin {gather*} -\frac {3 \, {\left (8 \, x^{2} + 5 \, x - 15\right )}}{8 \, {\left (x^{3} - x^{2} - 5 \, x + 5\right )}} - \frac {15 \, {\left (4 \, x^{2} + x - 15\right )}}{8 \, {\left (x^{3} - x^{2} - 5 \, x + 5\right )}} + \frac {15 \, {\left (2 \, x^{2} + x - 5\right )}}{4 \, {\left (x^{3} - x^{2} - 5 \, x + 5\right )}} - \frac {3 \, x}{4 \cdot 2^{\frac {x}{x^{2} - 5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.77, size = 24, normalized size = 0.71 \begin {gather*} -\frac {3}{x-1}-\frac {3\,x}{4\,2^{\frac {x}{x^2-5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 22, normalized size = 0.65 \begin {gather*} - \frac {3 x e^{- \frac {x \log {\relax (2 )}}{x^{2} - 5}}}{4} - \frac {3}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________