3.73.19
Optimal. Leaf size=17
________________________________________________________________________________________
Rubi [A] time = 0.36, antiderivative size = 21, normalized size of antiderivative = 1.24,
number of steps used = 13, number of rules used = 7, integrand size = 40, = 0.175, Rules used
= {6742, 2353, 2309, 2178, 2302, 29, 2522}
Antiderivative was successfully verified.
[In]
Int[(5 + x + x^2*Log[(-3*x)/4] - 5*Log[(-3*x)/4]*Log[Log[(-3*x)/4]])/(x^2*Log[(-3*x)/4]),x]
[Out]
x + Log[Log[(-3*x)/4]] + (5*Log[Log[(-3*x)/4]])/x
Rule 29
Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2302
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]
Rule 2309
Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
+ b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]
Rule 2353
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))
Rule 2522
Int[((a_.) + Log[Log[(d_.)*(x_)^(n_.)]^(p_.)*(c_.)]*(b_.))*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[((e*x)^(m + 1
)*(a + b*Log[c*Log[d*x^n]^p]))/(e*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(e*x)^m/Log[d*x^n], x], x] /; FreeQ
[{a, b, c, d, e, m, n, p}, x] && NeQ[m, -1]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 21, normalized size = 1.24
Antiderivative was successfully verified.
[In]
Integrate[(5 + x + x^2*Log[(-3*x)/4] - 5*Log[(-3*x)/4]*Log[Log[(-3*x)/4]])/(x^2*Log[(-3*x)/4]),x]
[Out]
x + Log[Log[(-3*x)/4]] + (5*Log[Log[(-3*x)/4]])/x
________________________________________________________________________________________
fricas [A] time = 0.58, size = 17, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-5*log(-3/4*x)*log(log(-3/4*x))+x^2*log(-3/4*x)+5+x)/x^2/log(-3/4*x),x, algorithm="fricas")
[Out]
(x^2 + (x + 5)*log(log(-3/4*x)))/x
________________________________________________________________________________________
giac [A] time = 0.15, size = 22, normalized size = 1.29
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-5*log(-3/4*x)*log(log(-3/4*x))+x^2*log(-3/4*x)+5+x)/x^2/log(-3/4*x),x, algorithm="giac")
[Out]
x + 5*log(log(-3/4*x))/x + log(-2*log(2) + log(-3*x))
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 1.06
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((-5*ln(-3/4*x)*ln(ln(-3/4*x))+x^2*ln(-3/4*x)+5+x)/x^2/ln(-3/4*x),x,method=_RETURNVERBOSE)
[Out]
5*ln(ln(-3/4*x))/x+x+ln(ln(-3/4*x))
________________________________________________________________________________________
maxima [A] time = 0.37, size = 17, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-5*log(-3/4*x)*log(log(-3/4*x))+x^2*log(-3/4*x)+5+x)/x^2/log(-3/4*x),x, algorithm="maxima")
[Out]
x + 5*log(log(-3/4*x))/x + log(log(-3/4*x))
________________________________________________________________________________________
mupad [B] time = 4.44, size = 17, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((x - 5*log(-(3*x)/4)*log(log(-(3*x)/4)) + x^2*log(-(3*x)/4) + 5)/(x^2*log(-(3*x)/4)),x)
[Out]
x + log(log(-(3*x)/4)) + (5*log(log(-(3*x)/4)))/x
________________________________________________________________________________________
sympy [A] time = 0.37, size = 24, normalized size = 1.41
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-5*ln(-3/4*x)*ln(ln(-3/4*x))+x**2*ln(-3/4*x)+5+x)/x**2/ln(-3/4*x),x)
[Out]
x + log(log(-3*x/4)) + 5*log(log(-3*x/4))/x
________________________________________________________________________________________