3.73.20
Optimal. Leaf size=33
________________________________________________________________________________________
Rubi [F] time = 2.28, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-14 + 4*E^3 + 4*E^4 + E^x*(-20 + 8*E^3 + 8*E^4 - 8*x) + E^(2*x)*(-6 + 4*E^3 + 4*E^4 - 4*x) - 4*x + (2*x +
2*E^(2*x)*x)*Log[x])/((x + 2*E^x*x + E^(2*x)*x)*Log[x]^3),x]
[Out]
(3 - 2*E^3 - 2*E^4)/Log[x]^2 + (2*x)/Log[x]^2 - 8*Defer[Int][1/((1 + E^x)*x*Log[x]^3), x] + 4*Defer[Int][1/((1
+ E^x)^2*Log[x]^2), x] - 4*Defer[Int][1/((1 + E^x)*Log[x]^2), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 53, normalized size = 1.61
Antiderivative was successfully verified.
[In]
Integrate[(-14 + 4*E^3 + 4*E^4 + E^x*(-20 + 8*E^3 + 8*E^4 - 8*x) + E^(2*x)*(-6 + 4*E^3 + 4*E^4 - 4*x) - 4*x +
(2*x + 2*E^(2*x)*x)*Log[x])/((x + 2*E^x*x + E^(2*x)*x)*Log[x]^3),x]
[Out]
-((-7 + 2*E^3 + 2*E^4 - 3*E^x + 2*E^(3 + x) + 2*E^(4 + x) - 2*x - 2*E^x*x)/((1 + E^x)*Log[x]^2))
________________________________________________________________________________________
fricas [A] time = 0.63, size = 40, normalized size = 1.21
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x*exp(x)^2+2*x)*log(x)+(4*exp(4)+4*exp(3)-4*x-6)*exp(x)^2+(8*exp(4)+8*exp(3)-8*x-20)*exp(x)+4*ex
p(4)+4*exp(3)-4*x-14)/(x*exp(x)^2+2*exp(x)*x+x)/log(x)^3,x, algorithm="fricas")
[Out]
((2*x - 2*e^4 - 2*e^3 + 3)*e^x + 2*x - 2*e^4 - 2*e^3 + 7)/((e^x + 1)*log(x)^2)
________________________________________________________________________________________
giac [A] time = 0.18, size = 49, normalized size = 1.48
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x*exp(x)^2+2*x)*log(x)+(4*exp(4)+4*exp(3)-4*x-6)*exp(x)^2+(8*exp(4)+8*exp(3)-8*x-20)*exp(x)+4*ex
p(4)+4*exp(3)-4*x-14)/(x*exp(x)^2+2*exp(x)*x+x)/log(x)^3,x, algorithm="giac")
[Out]
(2*x*e^x + 2*x - 2*e^4 - 2*e^3 - 2*e^(x + 4) - 2*e^(x + 3) + 3*e^x + 7)/(e^x*log(x)^2 + log(x)^2)
________________________________________________________________________________________
maple [A] time = 0.04, size = 47, normalized size = 1.42
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((2*x*exp(x)^2+2*x)*ln(x)+(4*exp(4)+4*exp(3)-4*x-6)*exp(x)^2+(8*exp(4)+8*exp(3)-8*x-20)*exp(x)+4*exp(4)+4*
exp(3)-4*x-14)/(x*exp(x)^2+2*exp(x)*x+x)/ln(x)^3,x,method=_RETURNVERBOSE)
[Out]
-(2*exp(4+x)+2*exp(4)+2*exp(3+x)+2*exp(3)-2*exp(x)*x-2*x-3*exp(x)-7)/(exp(x)+1)/ln(x)^2
________________________________________________________________________________________
maxima [A] time = 0.39, size = 44, normalized size = 1.33
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x*exp(x)^2+2*x)*log(x)+(4*exp(4)+4*exp(3)-4*x-6)*exp(x)^2+(8*exp(4)+8*exp(3)-8*x-20)*exp(x)+4*ex
p(4)+4*exp(3)-4*x-14)/(x*exp(x)^2+2*exp(x)*x+x)/log(x)^3,x, algorithm="maxima")
[Out]
((2*x - 2*e^4 - 2*e^3 + 3)*e^x + 2*x - 2*e^4 - 2*e^3 + 7)/(e^x*log(x)^2 + log(x)^2)
________________________________________________________________________________________
mupad [B] time = 4.62, size = 213, normalized size = 6.45
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(4*x - 4*exp(3) - 4*exp(4) + exp(2*x)*(4*x - 4*exp(3) - 4*exp(4) + 6) - log(x)*(2*x + 2*x*exp(2*x)) + exp
(x)*(8*x - 8*exp(3) - 8*exp(4) + 20) + 14)/(log(x)^3*(x + x*exp(2*x) + 2*x*exp(x))),x)
[Out]
x - (2*x + 2*x^2)/(exp(2*x) + 2*exp(x) + 1) + (2*x + exp(2*x)*((2*x^2)/3 - 2*x + 2/3) - exp(x)*((8*x^2)/3 - 4/
3) + (2*x^2)/3 + 2/3)/(3*exp(2*x) + exp(3*x) + 3*exp(x) + 1) + ((4*x^2)/3 - 2/3)/(exp(x) + 1) + ((2*x - 2*exp(
x + 3) - 2*exp(x + 4) - 2*exp(3) - 2*exp(4) + 3*exp(x) + 2*x*exp(x) + 7)/(exp(x) + 1) - (x*log(x)*(exp(2*x) +
1))/(exp(x) + 1)^2)/log(x)^2 + ((x*(exp(2*x) + 1))/(exp(x) + 1)^2 - (x*log(x)*(exp(2*x) + exp(3*x) + exp(x) +
2*x*exp(2*x) - 2*x*exp(x) + 1))/(exp(x) + 1)^3)/log(x)
________________________________________________________________________________________
sympy [A] time = 0.31, size = 34, normalized size = 1.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x*exp(x)**2+2*x)*ln(x)+(4*exp(4)+4*exp(3)-4*x-6)*exp(x)**2+(8*exp(4)+8*exp(3)-8*x-20)*exp(x)+4*e
xp(4)+4*exp(3)-4*x-14)/(x*exp(x)**2+2*exp(x)*x+x)/ln(x)**3,x)
[Out]
(2*x - 2*exp(4) - 2*exp(3) + 3)/log(x)**2 + 4/(exp(x)*log(x)**2 + log(x)**2)
________________________________________________________________________________________