3.73.20 14+4e3+4e4+ex(20+8e3+8e48x)+e2x(6+4e3+4e44x)4x+(2x+2e2xx)log(x)(x+2exx+e2xx)log3(x)dx

Optimal. Leaf size=33 2(e3e4+12(3+41+ex)+x)log2(x)

________________________________________________________________________________________

Rubi [F]  time = 2.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 14+4e3+4e4+ex(20+8e3+8e48x)+e2x(6+4e3+4e44x)4x+(2x+2e2xx)log(x)(x+2exx+e2xx)log3(x)dx

Verification is not applicable to the result.

[In]

Int[(-14 + 4*E^3 + 4*E^4 + E^x*(-20 + 8*E^3 + 8*E^4 - 8*x) + E^(2*x)*(-6 + 4*E^3 + 4*E^4 - 4*x) - 4*x + (2*x +
 2*E^(2*x)*x)*Log[x])/((x + 2*E^x*x + E^(2*x)*x)*Log[x]^3),x]

[Out]

(3 - 2*E^3 - 2*E^4)/Log[x]^2 + (2*x)/Log[x]^2 - 8*Defer[Int][1/((1 + E^x)*x*Log[x]^3), x] + 4*Defer[Int][1/((1
 + E^x)^2*Log[x]^2), x] - 4*Defer[Int][1/((1 + E^x)*Log[x]^2), x]

Rubi steps

integral=14(127e3(1+e))+ex(20+8e3+8e48x)+e2x(6+4e3+4e44x)4x+(2x+2e2xx)log(x)(1+ex)2xlog3(x)dx=(4(1+ex)2log2(x)4(2+xlog(x))(1+ex)xlog3(x)+2(3(123e3(1+e))2x+xlog(x))xlog3(x))dx=23(123e3(1+e))2x+xlog(x)xlog3(x)dx+41(1+ex)2log2(x)dx42+xlog(x)(1+ex)xlog3(x)dx=2(3+2e3+2e42xxlog3(x)+1log2(x))dx4(2(1+ex)xlog3(x)+1(1+ex)log2(x))dx+41(1+ex)2log2(x)dx=23+2e3+2e42xxlog3(x)dx+21log2(x)dx+41(1+ex)2log2(x)dx41(1+ex)log2(x)dx81(1+ex)xlog3(x)dx=2xlog(x)+2(2log3(x)+3+2e3+2e4xlog3(x))dx+21log(x)dx+41(1+ex)2log2(x)dx41(1+ex)log2(x)dx81(1+ex)xlog3(x)dx=2xlog(x)+2li(x)41log3(x)dx+41(1+ex)2log2(x)dx41(1+ex)log2(x)dx81(1+ex)xlog3(x)dx(2(32e32e4))1xlog3(x)dx=2xlog2(x)2xlog(x)+2li(x)21log2(x)dx+41(1+ex)2log2(x)dx41(1+ex)log2(x)dx81(1+ex)xlog3(x)dx(2(32e32e4))Subst(1x3dx,x,log(x))=32e32e4log2(x)+2xlog2(x)+2li(x)21log(x)dx+41(1+ex)2log2(x)dx41(1+ex)log2(x)dx81(1+ex)xlog3(x)dx=32e32e4log2(x)+2xlog2(x)+41(1+ex)2log2(x)dx41(1+ex)log2(x)dx81(1+ex)xlog3(x)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.36, size = 53, normalized size = 1.61 7+2e3+2e43ex+2e3+x+2e4+x2x2exx(1+ex)log2(x)

Antiderivative was successfully verified.

[In]

Integrate[(-14 + 4*E^3 + 4*E^4 + E^x*(-20 + 8*E^3 + 8*E^4 - 8*x) + E^(2*x)*(-6 + 4*E^3 + 4*E^4 - 4*x) - 4*x +
(2*x + 2*E^(2*x)*x)*Log[x])/((x + 2*E^x*x + E^(2*x)*x)*Log[x]^3),x]

[Out]

-((-7 + 2*E^3 + 2*E^4 - 3*E^x + 2*E^(3 + x) + 2*E^(4 + x) - 2*x - 2*E^x*x)/((1 + E^x)*Log[x]^2))

________________________________________________________________________________________

fricas [A]  time = 0.63, size = 40, normalized size = 1.21 (2x2e42e3+3)ex+2x2e42e3+7(ex+1)log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x*exp(x)^2+2*x)*log(x)+(4*exp(4)+4*exp(3)-4*x-6)*exp(x)^2+(8*exp(4)+8*exp(3)-8*x-20)*exp(x)+4*ex
p(4)+4*exp(3)-4*x-14)/(x*exp(x)^2+2*exp(x)*x+x)/log(x)^3,x, algorithm="fricas")

[Out]

((2*x - 2*e^4 - 2*e^3 + 3)*e^x + 2*x - 2*e^4 - 2*e^3 + 7)/((e^x + 1)*log(x)^2)

________________________________________________________________________________________

giac [A]  time = 0.18, size = 49, normalized size = 1.48 2xex+2x2e42e32e(x+4)2e(x+3)+3ex+7exlog(x)2+log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x*exp(x)^2+2*x)*log(x)+(4*exp(4)+4*exp(3)-4*x-6)*exp(x)^2+(8*exp(4)+8*exp(3)-8*x-20)*exp(x)+4*ex
p(4)+4*exp(3)-4*x-14)/(x*exp(x)^2+2*exp(x)*x+x)/log(x)^3,x, algorithm="giac")

[Out]

(2*x*e^x + 2*x - 2*e^4 - 2*e^3 - 2*e^(x + 4) - 2*e^(x + 3) + 3*e^x + 7)/(e^x*log(x)^2 + log(x)^2)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 47, normalized size = 1.42




method result size



risch 2e4+x+2e4+2e3+x+2e32exx2x3ex7(ex+1)ln(x)2 47



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x*exp(x)^2+2*x)*ln(x)+(4*exp(4)+4*exp(3)-4*x-6)*exp(x)^2+(8*exp(4)+8*exp(3)-8*x-20)*exp(x)+4*exp(4)+4*
exp(3)-4*x-14)/(x*exp(x)^2+2*exp(x)*x+x)/ln(x)^3,x,method=_RETURNVERBOSE)

[Out]

-(2*exp(4+x)+2*exp(4)+2*exp(3+x)+2*exp(3)-2*exp(x)*x-2*x-3*exp(x)-7)/(exp(x)+1)/ln(x)^2

________________________________________________________________________________________

maxima [A]  time = 0.39, size = 44, normalized size = 1.33 (2x2e42e3+3)ex+2x2e42e3+7exlog(x)2+log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x*exp(x)^2+2*x)*log(x)+(4*exp(4)+4*exp(3)-4*x-6)*exp(x)^2+(8*exp(4)+8*exp(3)-8*x-20)*exp(x)+4*ex
p(4)+4*exp(3)-4*x-14)/(x*exp(x)^2+2*exp(x)*x+x)/log(x)^3,x, algorithm="maxima")

[Out]

((2*x - 2*e^4 - 2*e^3 + 3)*e^x + 2*x - 2*e^4 - 2*e^3 + 7)/(e^x*log(x)^2 + log(x)^2)

________________________________________________________________________________________

mupad [B]  time = 4.62, size = 213, normalized size = 6.45 x2x2+2xe2x+2ex+1+2x+e2x(2x232x+23)ex(8x2343)+2x23+233e2x+e3x+3ex+1+4x2323ex+1+2x2ex+32ex+42e32e4+3ex+2xex+7ex+1xln(x)(e2x+1)(ex+1)2ln(x)2+x(e2x+1)(ex+1)2xln(x)(e2x+e3x+ex+2xe2x2xex+1)(ex+1)3ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(4*x - 4*exp(3) - 4*exp(4) + exp(2*x)*(4*x - 4*exp(3) - 4*exp(4) + 6) - log(x)*(2*x + 2*x*exp(2*x)) + exp
(x)*(8*x - 8*exp(3) - 8*exp(4) + 20) + 14)/(log(x)^3*(x + x*exp(2*x) + 2*x*exp(x))),x)

[Out]

x - (2*x + 2*x^2)/(exp(2*x) + 2*exp(x) + 1) + (2*x + exp(2*x)*((2*x^2)/3 - 2*x + 2/3) - exp(x)*((8*x^2)/3 - 4/
3) + (2*x^2)/3 + 2/3)/(3*exp(2*x) + exp(3*x) + 3*exp(x) + 1) + ((4*x^2)/3 - 2/3)/(exp(x) + 1) + ((2*x - 2*exp(
x + 3) - 2*exp(x + 4) - 2*exp(3) - 2*exp(4) + 3*exp(x) + 2*x*exp(x) + 7)/(exp(x) + 1) - (x*log(x)*(exp(2*x) +
1))/(exp(x) + 1)^2)/log(x)^2 + ((x*(exp(2*x) + 1))/(exp(x) + 1)^2 - (x*log(x)*(exp(2*x) + exp(3*x) + exp(x) +
2*x*exp(2*x) - 2*x*exp(x) + 1))/(exp(x) + 1)^3)/log(x)

________________________________________________________________________________________

sympy [A]  time = 0.31, size = 34, normalized size = 1.03 2x2e42e3+3log(x)2+4exlog(x)2+log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x*exp(x)**2+2*x)*ln(x)+(4*exp(4)+4*exp(3)-4*x-6)*exp(x)**2+(8*exp(4)+8*exp(3)-8*x-20)*exp(x)+4*e
xp(4)+4*exp(3)-4*x-14)/(x*exp(x)**2+2*exp(x)*x+x)/ln(x)**3,x)

[Out]

(2*x - 2*exp(4) - 2*exp(3) + 3)/log(x)**2 + 4/(exp(x)*log(x)**2 + log(x)**2)

________________________________________________________________________________________