3.73.21 12ee4(2x+ee4(3+11e11x36x2))dx

Optimal. Leaf size=26 e11x36+12x(3+ee4x)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 29, normalized size of antiderivative = 1.12, number of steps used = 4, number of rules used = 2, integrand size = 37, number of rulesintegrand size = 0.054, Rules used = {12, 2209} e11x36+12ee4x2+3x2

Antiderivative was successfully verified.

[In]

Int[(2*x + E^E^4*(3 + 11*E^((11*x^3)/6)*x^2))/(2*E^E^4),x]

[Out]

E^((11*x^3)/6) + (3*x)/2 + x^2/(2*E^E^4)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2209

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rubi steps

integral=12ee4(2x+ee4(3+11e11x36x2))dx=12ee4x2+12(3+11e11x36x2)dx=3x2+12ee4x2+112e11x36x2dx=e11x36+3x2+12ee4x2

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 29, normalized size = 1.12 e11x36+3x2+12ee4x2

Antiderivative was successfully verified.

[In]

Integrate[(2*x + E^E^4*(3 + 11*E^((11*x^3)/6)*x^2))/(2*E^E^4),x]

[Out]

E^((11*x^3)/6) + (3*x)/2 + x^2/(2*E^E^4)

________________________________________________________________________________________

fricas [A]  time = 0.75, size = 27, normalized size = 1.04 12(x2+(3x+2e(116x3))e(e4))e(e4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*((11*x^2*exp(11/6*x^3)+3)*exp(exp(4))+2*x)/exp(exp(4)),x, algorithm="fricas")

[Out]

1/2*(x^2 + (3*x + 2*e^(11/6*x^3))*e^(e^4))*e^(-e^4)

________________________________________________________________________________________

giac [A]  time = 0.18, size = 27, normalized size = 1.04 12(x2+(3x+2e(116x3))e(e4))e(e4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*((11*x^2*exp(11/6*x^3)+3)*exp(exp(4))+2*x)/exp(exp(4)),x, algorithm="giac")

[Out]

1/2*(x^2 + (3*x + 2*e^(11/6*x^3))*e^(e^4))*e^(-e^4)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 21, normalized size = 0.81




method result size



norman 3x2+ee4x22+e11x36 21
risch 3x2+ee4x22+e11x36 21
default ee4(ee4(3x+2e11x36)+x2)2 28



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/2*((11*x^2*exp(11/6*x^3)+3)*exp(exp(4))+2*x)/exp(exp(4)),x,method=_RETURNVERBOSE)

[Out]

3/2*x+1/2/exp(exp(4))*x^2+exp(11/6*x^3)

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 27, normalized size = 1.04 12(x2+(3x+2e(116x3))e(e4))e(e4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*((11*x^2*exp(11/6*x^3)+3)*exp(exp(4))+2*x)/exp(exp(4)),x, algorithm="maxima")

[Out]

1/2*(x^2 + (3*x + 2*e^(11/6*x^3))*e^(e^4))*e^(-e^4)

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 20, normalized size = 0.77 3x2+e11x36+x2ee42

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(-exp(4))*(x + (exp(exp(4))*(11*x^2*exp((11*x^3)/6) + 3))/2),x)

[Out]

(3*x)/2 + exp((11*x^3)/6) + (x^2*exp(-exp(4)))/2

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 22, normalized size = 0.85 x22ee4+3x2+e11x36

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*((11*x**2*exp(11/6*x**3)+3)*exp(exp(4))+2*x)/exp(exp(4)),x)

[Out]

x**2*exp(-exp(4))/2 + 3*x/2 + exp(11*x**3/6)

________________________________________________________________________________________