Optimal. Leaf size=27 \[ \left (-x+\frac {e^{\frac {81 \left (-2+\frac {e^{25}}{x}\right )}{e^2}}}{\log (x)}\right )^4 \]
________________________________________________________________________________________
Rubi [B] time = 2.54, antiderivative size = 98, normalized size of antiderivative = 3.63, number of steps used = 9, number of rules used = 4, integrand size = 276, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.014, Rules used = {12, 6688, 6742, 2288} \begin {gather*} x^4-\frac {4 e^{\frac {81 e^{23}}{x}-\frac {162}{e^2}} x^3}{\log (x)}+\frac {6 e^{\frac {162 e^{23}}{x}-\frac {324}{e^2}} x^2}{\log ^2(x)}+\frac {e^{\frac {324 e^{23}}{x}-\frac {648}{e^2}}}{\log ^4(x)}-\frac {4 e^{\frac {243 e^{23}}{x}-\frac {486}{e^2}} x}{\log ^3(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-4 e^{2+\frac {4 \left (81 e^{25}-162 x\right )}{e^2 x}} x+\left (-324 e^{25+\frac {4 \left (81 e^{25}-162 x\right )}{e^2 x}}+12 e^{2+\frac {3 \left (81 e^{25}-162 x\right )}{e^2 x}} x^2\right ) \log (x)+\left (-12 e^{2+\frac {2 \left (81 e^{25}-162 x\right )}{e^2 x}} x^3+e^{\frac {3 \left (81 e^{25}-162 x\right )}{e^2 x}} \left (972 e^{25} x-4 e^2 x^2\right )\right ) \log ^2(x)+\left (4 e^{2+\frac {81 e^{25}-162 x}{e^2 x}} x^4+e^{\frac {2 \left (81 e^{25}-162 x\right )}{e^2 x}} \left (-972 e^{25} x^2+12 e^2 x^3\right )\right ) \log ^3(x)+e^{\frac {81 e^{25}-162 x}{e^2 x}} \left (324 e^{25} x^3-12 e^2 x^4\right ) \log ^4(x)+4 e^2 x^5 \log ^5(x)}{x^2 \log ^5(x)} \, dx}{e^2}\\ &=\frac {\int \frac {4 e^{2-\frac {648}{e^2}} \left (e^{\frac {81 e^{23}}{x}}-e^{\frac {162}{e^2}} x \log (x)\right )^3 \left (-e^{\frac {81 e^{23}}{x}} x-81 e^{23+\frac {81 e^{23}}{x}} \log (x)-e^{\frac {162}{e^2}} x^2 \log ^2(x)\right )}{x^2 \log ^5(x)} \, dx}{e^2}\\ &=\left (4 e^{-\frac {648}{e^2}}\right ) \int \frac {\left (e^{\frac {81 e^{23}}{x}}-e^{\frac {162}{e^2}} x \log (x)\right )^3 \left (-e^{\frac {81 e^{23}}{x}} x-81 e^{23+\frac {81 e^{23}}{x}} \log (x)-e^{\frac {162}{e^2}} x^2 \log ^2(x)\right )}{x^2 \log ^5(x)} \, dx\\ &=\left (4 e^{-\frac {648}{e^2}}\right ) \int \left (e^{\frac {648}{e^2}} x^3-\frac {e^{\frac {324 e^{23}}{x}} \left (x+81 e^{23} \log (x)\right )}{x^2 \log ^5(x)}-\frac {e^{\frac {162}{e^2}+\frac {243 e^{23}}{x}} \left (-3 x-243 e^{23} \log (x)+x \log (x)\right )}{x \log ^4(x)}+\frac {3 e^{\frac {324}{e^2}+\frac {162 e^{23}}{x}} \left (-x-81 e^{23} \log (x)+x \log (x)\right )}{\log ^3(x)}-\frac {e^{\frac {486}{e^2}+\frac {81 e^{23}}{x}} x \left (-x-81 e^{23} \log (x)+3 x \log (x)\right )}{\log ^2(x)}\right ) \, dx\\ &=x^4-\left (4 e^{-\frac {648}{e^2}}\right ) \int \frac {e^{\frac {324 e^{23}}{x}} \left (x+81 e^{23} \log (x)\right )}{x^2 \log ^5(x)} \, dx-\left (4 e^{-\frac {648}{e^2}}\right ) \int \frac {e^{\frac {162}{e^2}+\frac {243 e^{23}}{x}} \left (-3 x-243 e^{23} \log (x)+x \log (x)\right )}{x \log ^4(x)} \, dx-\left (4 e^{-\frac {648}{e^2}}\right ) \int \frac {e^{\frac {486}{e^2}+\frac {81 e^{23}}{x}} x \left (-x-81 e^{23} \log (x)+3 x \log (x)\right )}{\log ^2(x)} \, dx+\left (12 e^{-\frac {648}{e^2}}\right ) \int \frac {e^{\frac {324}{e^2}+\frac {162 e^{23}}{x}} \left (-x-81 e^{23} \log (x)+x \log (x)\right )}{\log ^3(x)} \, dx\\ &=x^4+\frac {e^{-\frac {648}{e^2}+\frac {324 e^{23}}{x}}}{\log ^4(x)}-\frac {4 e^{-\frac {486}{e^2}+\frac {243 e^{23}}{x}} x}{\log ^3(x)}+\frac {6 e^{-\frac {324}{e^2}+\frac {162 e^{23}}{x}} x^2}{\log ^2(x)}-\frac {4 e^{-\frac {162}{e^2}+\frac {81 e^{23}}{x}} x^3}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 37, normalized size = 1.37 \begin {gather*} \frac {e^{-\frac {648}{e^2}} \left (e^{\frac {81 e^{23}}{x}}-e^{\frac {162}{e^2}} x \log (x)\right )^4}{\log ^4(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.87, size = 130, normalized size = 4.81 \begin {gather*} \frac {{\left (x^{4} e^{8} \log \relax (x)^{4} - 4 \, x^{3} e^{\left (\frac {{\left (2 \, x e^{2} - 162 \, x + 81 \, e^{25}\right )} e^{\left (-2\right )}}{x} + 6\right )} \log \relax (x)^{3} + 6 \, x^{2} e^{\left (\frac {2 \, {\left (2 \, x e^{2} - 162 \, x + 81 \, e^{25}\right )} e^{\left (-2\right )}}{x} + 4\right )} \log \relax (x)^{2} - 4 \, x e^{\left (\frac {3 \, {\left (2 \, x e^{2} - 162 \, x + 81 \, e^{25}\right )} e^{\left (-2\right )}}{x} + 2\right )} \log \relax (x) + e^{\left (\frac {4 \, {\left (2 \, x e^{2} - 162 \, x + 81 \, e^{25}\right )} e^{\left (-2\right )}}{x}\right )}\right )} e^{\left (-8\right )}}{\log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 132, normalized size = 4.89 \begin {gather*} \frac {2 \, {\left (3 \, x^{2} e^{\left (\frac {2 \, {\left (x e^{2} - 162 \, x + 81 \, e^{25}\right )} e^{\left (-2\right )}}{x} + 1\right )} \log \relax (x) - 2 \, x e^{\left (\frac {3 \, {\left (x e^{2} - 162 \, x + 81 \, e^{25}\right )} e^{\left (-2\right )}}{x}\right )}\right )} e^{\left (-3\right )}}{\log \relax (x)^{3}} + \frac {{\left (x^{4} e^{8} \log \relax (x)^{4} - 4 \, x^{3} e^{\left (\frac {{\left (2 \, x e^{2} - 162 \, x + 81 \, e^{25}\right )} e^{\left (-2\right )}}{x} + 6\right )} \log \relax (x)^{3} + e^{\left (\frac {4 \, {\left (2 \, x e^{2} - 162 \, x + 81 \, e^{25}\right )} e^{\left (-2\right )}}{x}\right )}\right )} e^{\left (-8\right )}}{\log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.16, size = 93, normalized size = 3.44
method | result | size |
risch | \(x^{4}-\frac {{\mathrm e}^{\frac {81 \left ({\mathrm e}^{25}-2 x \right ) {\mathrm e}^{-2}}{x}} \left (4 x^{3} \ln \relax (x )^{3}-6 x^{2} {\mathrm e}^{\frac {81 \left ({\mathrm e}^{25}-2 x \right ) {\mathrm e}^{-2}}{x}} \ln \relax (x )^{2}+4 x \,{\mathrm e}^{\frac {162 \left ({\mathrm e}^{25}-2 x \right ) {\mathrm e}^{-2}}{x}} \ln \relax (x )-{\mathrm e}^{\frac {243 \left ({\mathrm e}^{25}-2 x \right ) {\mathrm e}^{-2}}{x}}\right )}{\ln \relax (x )^{4}}\) | \(93\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 99, normalized size = 3.67 \begin {gather*} {\left (x^{4} e^{2} - \frac {{\left (4 \, x^{3} e^{\left (\frac {81 \, e^{23}}{x} + 486 \, e^{\left (-2\right )} + 2\right )} \log \relax (x)^{3} - 6 \, x^{2} e^{\left (\frac {162 \, e^{23}}{x} + 324 \, e^{\left (-2\right )} + 2\right )} \log \relax (x)^{2} + 4 \, x e^{\left (\frac {243 \, e^{23}}{x} + 162 \, e^{\left (-2\right )} + 2\right )} \log \relax (x) - e^{\left (\frac {324 \, e^{23}}{x} + 2\right )}\right )} e^{\left (-648 \, e^{\left (-2\right )}\right )}}{\log \relax (x)^{4}}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.26, size = 86, normalized size = 3.19 \begin {gather*} \frac {{\mathrm {e}}^{\frac {324\,{\mathrm {e}}^{23}}{x}-648\,{\mathrm {e}}^{-2}}}{{\ln \relax (x)}^4}+x^4-\frac {4\,x\,{\mathrm {e}}^{\frac {243\,{\mathrm {e}}^{23}}{x}-486\,{\mathrm {e}}^{-2}}}{{\ln \relax (x)}^3}-\frac {4\,x^3\,{\mathrm {e}}^{\frac {81\,{\mathrm {e}}^{23}}{x}-162\,{\mathrm {e}}^{-2}}}{\ln \relax (x)}+\frac {6\,x^2\,{\mathrm {e}}^{\frac {162\,{\mathrm {e}}^{23}}{x}-324\,{\mathrm {e}}^{-2}}}{{\ln \relax (x)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.66, size = 102, normalized size = 3.78 \begin {gather*} x^{4} + \frac {- 4 x^{3} e^{\frac {- 162 x + 81 e^{25}}{x e^{2}}} \log {\relax (x )}^{9} + 6 x^{2} e^{\frac {2 \left (- 162 x + 81 e^{25}\right )}{x e^{2}}} \log {\relax (x )}^{8} - 4 x e^{\frac {3 \left (- 162 x + 81 e^{25}\right )}{x e^{2}}} \log {\relax (x )}^{7} + e^{\frac {4 \left (- 162 x + 81 e^{25}\right )}{x e^{2}}} \log {\relax (x )}^{6}}{\log {\relax (x )}^{10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________