3.73.27 82x+((84x)log(x)log(1log(x))log(log(1log(x)))+(42x)log(3)log(x)log(1log(x))log2(log(1log(x))))log(2+log(3)log(log(1log(x)))log(log(1log(x))))2log(x)log(1log(x))log(log(1log(x)))+log(3)log(x)log(1log(x))log2(log(1log(x)))dx

Optimal. Leaf size=21 (4x)xlog(log(3)+2log(log(1log(x))))

________________________________________________________________________________________

Rubi [F]  time = 3.57, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 82x+((84x)log(x)log(1log(x))log(log(1log(x)))+(42x)log(3)log(x)log(1log(x))log2(log(1log(x))))log(2+log(3)log(log(1log(x)))log(log(1log(x))))2log(x)log(1log(x))log(log(1log(x)))+log(3)log(x)log(1log(x))log2(log(1log(x)))dx

Verification is not applicable to the result.

[In]

Int[(8 - 2*x + ((8 - 4*x)*Log[x]*Log[Log[x]^(-1)]*Log[Log[Log[x]^(-1)]] + (4 - 2*x)*Log[3]*Log[x]*Log[Log[x]^(
-1)]*Log[Log[Log[x]^(-1)]]^2)*Log[(2 + Log[3]*Log[Log[Log[x]^(-1)]])/Log[Log[Log[x]^(-1)]]])/(2*Log[x]*Log[Log
[x]^(-1)]*Log[Log[Log[x]^(-1)]] + Log[3]*Log[x]*Log[Log[x]^(-1)]*Log[Log[Log[x]^(-1)]]^2),x]

[Out]

4*Defer[Int][1/(Log[x]*Log[Log[x]^(-1)]*Log[Log[Log[x]^(-1)]]), x] - Defer[Int][x/(Log[x]*Log[Log[x]^(-1)]*Log
[Log[Log[x]^(-1)]]), x] - 4*Log[3]*Defer[Int][1/(Log[x]*Log[Log[x]^(-1)]*(2 + Log[3]*Log[Log[Log[x]^(-1)]])),
x] + Log[3]*Defer[Int][x/(Log[x]*Log[Log[x]^(-1)]*(2 + Log[3]*Log[Log[Log[x]^(-1)]])), x] + 4*Defer[Int][Log[L
og[3] + 2/Log[Log[Log[x]^(-1)]]], x] - 2*Defer[Int][x*Log[Log[3] + 2/Log[Log[Log[x]^(-1)]]], x]

Rubi steps

integral=82x+((84x)log(x)log(1log(x))log(log(1log(x)))+(42x)log(3)log(x)log(1log(x))log2(log(1log(x))))log(2+log(3)log(log(1log(x)))log(log(1log(x))))log(x)log(1log(x))log(log(1log(x)))(2+log(3)log(log(1log(x))))dx=2(4x(2+x)log(x)log(1log(x))log(log(1log(x)))(2+log(3)log(log(1log(x))))log(log(3)+2log(log(1log(x)))))log(x)log(1log(x))log(log(1log(x)))(2+log(3)log(log(1log(x))))dx=24x(2+x)log(x)log(1log(x))log(log(1log(x)))(2+log(3)log(log(1log(x))))log(log(3)+2log(log(1log(x))))log(x)log(1log(x))log(log(1log(x)))(2+log(3)log(log(1log(x))))dx=2(4xlog(x)log(1log(x))log(log(1log(x)))(2+log(3)log(log(1log(x))))(2+x)log(log(3)+2log(log(1log(x)))))dx=24xlog(x)log(1log(x))log(log(1log(x)))(2+log(3)log(log(1log(x))))dx2(2+x)log(log(3)+2log(log(1log(x))))dx=2(4x2log(x)log(1log(x))log(log(1log(x)))+(4+x)log(3)2log(x)log(1log(x))(2+log(3)log(log(1log(x)))))dx2(2log(log(3)+2log(log(1log(x))))+xlog(log(3)+2log(log(1log(x)))))dx=(2xlog(log(3)+2log(log(1log(x))))dx)+4log(log(3)+2log(log(1log(x))))dx+log(3)4+xlog(x)log(1log(x))(2+log(3)log(log(1log(x))))dx+4xlog(x)log(1log(x))log(log(1log(x)))dx=(2xlog(log(3)+2log(log(1log(x))))dx)+4log(log(3)+2log(log(1log(x))))dx+log(3)(4log(x)log(1log(x))(2+log(3)log(log(1log(x))))+xlog(x)log(1log(x))(2+log(3)log(log(1log(x)))))dx+(4log(x)log(1log(x))log(log(1log(x)))xlog(x)log(1log(x))log(log(1log(x))))dx=(2xlog(log(3)+2log(log(1log(x))))dx)+41log(x)log(1log(x))log(log(1log(x)))dx+4log(log(3)+2log(log(1log(x))))dx+log(3)xlog(x)log(1log(x))(2+log(3)log(log(1log(x))))dx(4log(3))1log(x)log(1log(x))(2+log(3)log(log(1log(x))))dxxlog(x)log(1log(x))log(log(1log(x)))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.37, size = 20, normalized size = 0.95 ((4+x)xlog(log(3)+2log(log(1log(x)))))

Antiderivative was successfully verified.

[In]

Integrate[(8 - 2*x + ((8 - 4*x)*Log[x]*Log[Log[x]^(-1)]*Log[Log[Log[x]^(-1)]] + (4 - 2*x)*Log[3]*Log[x]*Log[Lo
g[x]^(-1)]*Log[Log[Log[x]^(-1)]]^2)*Log[(2 + Log[3]*Log[Log[Log[x]^(-1)]])/Log[Log[Log[x]^(-1)]]])/(2*Log[x]*L
og[Log[x]^(-1)]*Log[Log[Log[x]^(-1)]] + Log[3]*Log[x]*Log[Log[x]^(-1)]*Log[Log[Log[x]^(-1)]]^2),x]

[Out]

-((-4 + x)*x*Log[Log[3] + 2/Log[Log[Log[x]^(-1)]]])

________________________________________________________________________________________

fricas [A]  time = 1.12, size = 30, normalized size = 1.43 (x24x)log(log(3)log(log(1log(x)))+2log(log(1log(x))))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((4-2*x)*log(3)*log(x)*log(1/log(x))*log(log(1/log(x)))^2+(-4*x+8)*log(x)*log(1/log(x))*log(log(1/l
og(x))))*log((log(3)*log(log(1/log(x)))+2)/log(log(1/log(x))))-2*x+8)/(log(3)*log(x)*log(1/log(x))*log(log(1/l
og(x)))^2+2*log(x)*log(1/log(x))*log(log(1/log(x)))),x, algorithm="fricas")

[Out]

-(x^2 - 4*x)*log((log(3)*log(log(1/log(x))) + 2)/log(log(1/log(x))))

________________________________________________________________________________________

giac [B]  time = 1.94, size = 54, normalized size = 2.57 x2log(log(3)log(log(log(x)))+2)+x2log(log(log(log(x))))+4xlog(log(3)log(log(log(x)))+2)4xlog(log(log(log(x))))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((4-2*x)*log(3)*log(x)*log(1/log(x))*log(log(1/log(x)))^2+(-4*x+8)*log(x)*log(1/log(x))*log(log(1/l
og(x))))*log((log(3)*log(log(1/log(x)))+2)/log(log(1/log(x))))-2*x+8)/(log(3)*log(x)*log(1/log(x))*log(log(1/l
og(x)))^2+2*log(x)*log(1/log(x))*log(log(1/log(x)))),x, algorithm="giac")

[Out]

-x^2*log(log(3)*log(-log(log(x))) + 2) + x^2*log(log(-log(log(x)))) + 4*x*log(log(3)*log(-log(log(x))) + 2) -
4*x*log(log(-log(log(x))))

________________________________________________________________________________________

maple [C]  time = 0.30, size = 397, normalized size = 18.90




method result size



risch (x2+4x)ln(ln(3)ln(ln(ln(x)))+2)+x2ln(ln(ln(ln(x))))4xln(ln(ln(ln(x))))+iπx2csgn(i(ln(3)ln(ln(ln(x)))+2))csgn(iln(ln(ln(x))))csgn(i(ln(3)ln(ln(ln(x)))+2)ln(ln(ln(x))))2iπx2csgn(i(ln(3)ln(ln(ln(x)))+2))csgn(i(ln(3)ln(ln(ln(x)))+2)ln(ln(ln(x))))22iπx2csgn(iln(ln(ln(x))))csgn(i(ln(3)ln(ln(ln(x)))+2)ln(ln(ln(x))))22+iπx2csgn(i(ln(3)ln(ln(ln(x)))+2)ln(ln(ln(x))))322iπxcsgn(i(ln(3)ln(ln(ln(x)))+2))csgn(iln(ln(ln(x))))csgn(i(ln(3)ln(ln(ln(x)))+2)ln(ln(ln(x))))+2iπxcsgn(i(ln(3)ln(ln(ln(x)))+2))csgn(i(ln(3)ln(ln(ln(x)))+2)ln(ln(ln(x))))2+2iπxcsgn(iln(ln(ln(x))))csgn(i(ln(3)ln(ln(ln(x)))+2)ln(ln(ln(x))))22iπxcsgn(i(ln(3)ln(ln(ln(x)))+2)ln(ln(ln(x))))3 397



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((4-2*x)*ln(3)*ln(x)*ln(1/ln(x))*ln(ln(1/ln(x)))^2+(-4*x+8)*ln(x)*ln(1/ln(x))*ln(ln(1/ln(x))))*ln((ln(3)*
ln(ln(1/ln(x)))+2)/ln(ln(1/ln(x))))-2*x+8)/(ln(3)*ln(x)*ln(1/ln(x))*ln(ln(1/ln(x)))^2+2*ln(x)*ln(1/ln(x))*ln(l
n(1/ln(x)))),x,method=_RETURNVERBOSE)

[Out]

(-x^2+4*x)*ln(ln(3)*ln(-ln(ln(x)))+2)+x^2*ln(ln(-ln(ln(x))))-4*x*ln(ln(-ln(ln(x))))+1/2*I*Pi*x^2*csgn(I*(ln(3)
*ln(-ln(ln(x)))+2))*csgn(I/ln(-ln(ln(x))))*csgn(I/ln(-ln(ln(x)))*(ln(3)*ln(-ln(ln(x)))+2))-1/2*I*Pi*x^2*csgn(I
*(ln(3)*ln(-ln(ln(x)))+2))*csgn(I/ln(-ln(ln(x)))*(ln(3)*ln(-ln(ln(x)))+2))^2-1/2*I*Pi*x^2*csgn(I/ln(-ln(ln(x))
))*csgn(I/ln(-ln(ln(x)))*(ln(3)*ln(-ln(ln(x)))+2))^2+1/2*I*Pi*x^2*csgn(I/ln(-ln(ln(x)))*(ln(3)*ln(-ln(ln(x)))+
2))^3-2*I*Pi*x*csgn(I*(ln(3)*ln(-ln(ln(x)))+2))*csgn(I/ln(-ln(ln(x))))*csgn(I/ln(-ln(ln(x)))*(ln(3)*ln(-ln(ln(
x)))+2))+2*I*Pi*x*csgn(I*(ln(3)*ln(-ln(ln(x)))+2))*csgn(I/ln(-ln(ln(x)))*(ln(3)*ln(-ln(ln(x)))+2))^2+2*I*Pi*x*
csgn(I/ln(-ln(ln(x))))*csgn(I/ln(-ln(ln(x)))*(ln(3)*ln(-ln(ln(x)))+2))^2-2*I*Pi*x*csgn(I/ln(-ln(ln(x)))*(ln(3)
*ln(-ln(ln(x)))+2))^3

________________________________________________________________________________________

maxima [A]  time = 0.58, size = 37, normalized size = 1.76 (x24x)log(log(3)log(log(log(x)))+2)+(x24x)log(log(log(log(x))))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((4-2*x)*log(3)*log(x)*log(1/log(x))*log(log(1/log(x)))^2+(-4*x+8)*log(x)*log(1/log(x))*log(log(1/l
og(x))))*log((log(3)*log(log(1/log(x)))+2)/log(log(1/log(x))))-2*x+8)/(log(3)*log(x)*log(1/log(x))*log(log(1/l
og(x)))^2+2*log(x)*log(1/log(x))*log(log(1/log(x)))),x, algorithm="maxima")

[Out]

-(x^2 - 4*x)*log(log(3)*log(-log(log(x))) + 2) + (x^2 - 4*x)*log(log(-log(log(x))))

________________________________________________________________________________________

mupad [B]  time = 6.28, size = 27, normalized size = 1.29 xln(ln(ln(1ln(x)))ln(3)+2ln(ln(1ln(x))))(x4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(2*x + log((log(log(1/log(x)))*log(3) + 2)/log(log(1/log(x))))*(log(log(1/log(x)))*log(1/log(x))*log(x)*(
4*x - 8) + log(log(1/log(x)))^2*log(3)*log(1/log(x))*log(x)*(2*x - 4)) - 8)/(2*log(log(1/log(x)))*log(1/log(x)
)*log(x) + log(log(1/log(x)))^2*log(3)*log(1/log(x))*log(x)),x)

[Out]

-x*log((log(log(1/log(x)))*log(3) + 2)/log(log(1/log(x))))*(x - 4)

________________________________________________________________________________________

sympy [A]  time = 2.45, size = 29, normalized size = 1.38 (x2+4x)log(log(3)log(log(1log(x)))+2log(log(1log(x))))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((4-2*x)*ln(3)*ln(x)*ln(1/ln(x))*ln(ln(1/ln(x)))**2+(-4*x+8)*ln(x)*ln(1/ln(x))*ln(ln(1/ln(x))))*ln(
(ln(3)*ln(ln(1/ln(x)))+2)/ln(ln(1/ln(x))))-2*x+8)/(ln(3)*ln(x)*ln(1/ln(x))*ln(ln(1/ln(x)))**2+2*ln(x)*ln(1/ln(
x))*ln(ln(1/ln(x)))),x)

[Out]

(-x**2 + 4*x)*log((log(3)*log(log(1/log(x))) + 2)/log(log(1/log(x))))

________________________________________________________________________________________