3.73.30
Optimal. Leaf size=32
________________________________________________________________________________________
Rubi [F] time = 89.53, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^(((2500 + 250*x - 400*x^2 + 50*x^3)*Log[x]^2)/(-5 - x + (1875 - 750*x + 75*x^2)*Log[x]^2))*((-50000 - 1
5000*x + 7000*x^2 + 600*x^3 - 200*x^4)*Log[x] + (2500*x + 8000*x^2 - 700*x^3 - 200*x^4)*Log[x]^2 + (4687500*x
- 3750000*x^2 + 1125000*x^3 - 150000*x^4 + 7500*x^5)*Log[x]^4))/(25*x + 10*x^2 + x^3 + (-18750*x + 3750*x^2 +
750*x^3 - 150*x^4)*Log[x]^2 + (3515625*x - 2812500*x^2 + 843750*x^3 - 112500*x^4 + 5625*x^5)*Log[x]^4),x]
[Out]
(4*Defer[Int][E^((-50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2)), x])/3 - (1000*Defer[Int]
[1/(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))*(5 + x - 75*(-5 + x)^2*Log[x]^2)^2),
x])/3 - (5600*Defer[Int][1/(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))*(-5 + x)*(5
+ x - 75*(-5 + x)^2*Log[x]^2)^2), x])/3 - 36*Defer[Int][x/(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-
5 + x)^2*Log[x]^2))*(5 + x - 75*(-5 + x)^2*Log[x]^2)^2), x] - (4*Defer[Int][x^2/(E^((50*(-5 + x)^2*(2 + x)*Log
[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))*(5 + x - 75*(-5 + x)^2*Log[x]^2)^2), x])/3 - 15000*Defer[Int][Log[x]/
(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))*(5 + x - 75*(-5 + x)^2*Log[x]^2)^2), x]
- 50000*Defer[Int][Log[x]/(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))*x*(5 + x - 7
5*(-5 + x)^2*Log[x]^2)^2), x] + 7000*Defer[Int][(x*Log[x])/(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-
5 + x)^2*Log[x]^2))*(5 + x - 75*(-5 + x)^2*Log[x]^2)^2), x] + 600*Defer[Int][(x^2*Log[x])/(E^((50*(-5 + x)^2*(
2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))*(5 + x - 75*(-5 + x)^2*Log[x]^2)^2), x] - 200*Defer[Int][(x
^3*Log[x])/(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))*(5 + x - 75*(-5 + x)^2*Log[x
]^2)^2), x] - (560*Defer[Int][1/(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))*(5 - x)
*(5 + x - 75*(-5 + x)^2*Log[x]^2)), x])/3 - (68*Defer[Int][1/(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*
(-5 + x)^2*Log[x]^2))*(-5 - x + 75*(-5 + x)^2*Log[x]^2)), x])/3
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 34, normalized size = 1.06
Antiderivative was successfully verified.
[In]
Integrate[(E^(((2500 + 250*x - 400*x^2 + 50*x^3)*Log[x]^2)/(-5 - x + (1875 - 750*x + 75*x^2)*Log[x]^2))*((-500
00 - 15000*x + 7000*x^2 + 600*x^3 - 200*x^4)*Log[x] + (2500*x + 8000*x^2 - 700*x^3 - 200*x^4)*Log[x]^2 + (4687
500*x - 3750000*x^2 + 1125000*x^3 - 150000*x^4 + 7500*x^5)*Log[x]^4))/(25*x + 10*x^2 + x^3 + (-18750*x + 3750*
x^2 + 750*x^3 - 150*x^4)*Log[x]^2 + (3515625*x - 2812500*x^2 + 843750*x^3 - 112500*x^4 + 5625*x^5)*Log[x]^4),x
]
[Out]
2/E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))
________________________________________________________________________________________
fricas [A] time = 0.72, size = 43, normalized size = 1.34
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((7500*x^5-150000*x^4+1125000*x^3-3750000*x^2+4687500*x)*log(x)^4+(-200*x^4-700*x^3+8000*x^2+2500*x)
*log(x)^2+(-200*x^4+600*x^3+7000*x^2-15000*x-50000)*log(x))*exp((50*x^3-400*x^2+250*x+2500)*log(x)^2/((75*x^2-
750*x+1875)*log(x)^2-x-5))/((5625*x^5-112500*x^4+843750*x^3-2812500*x^2+3515625*x)*log(x)^4+(-150*x^4+750*x^3+
3750*x^2-18750*x)*log(x)^2+x^3+10*x^2+25*x),x, algorithm="fricas")
[Out]
2*e^(50*(x^3 - 8*x^2 + 5*x + 50)*log(x)^2/(75*(x^2 - 10*x + 25)*log(x)^2 - x - 5))
________________________________________________________________________________________
giac [B] time = 0.63, size = 151, normalized size = 4.72
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((7500*x^5-150000*x^4+1125000*x^3-3750000*x^2+4687500*x)*log(x)^4+(-200*x^4-700*x^3+8000*x^2+2500*x)
*log(x)^2+(-200*x^4+600*x^3+7000*x^2-15000*x-50000)*log(x))*exp((50*x^3-400*x^2+250*x+2500)*log(x)^2/((75*x^2-
750*x+1875)*log(x)^2-x-5))/((5625*x^5-112500*x^4+843750*x^3-2812500*x^2+3515625*x)*log(x)^4+(-150*x^4+750*x^3+
3750*x^2-18750*x)*log(x)^2+x^3+10*x^2+25*x),x, algorithm="giac")
[Out]
2*e^(50*x^3*log(x)^2/(75*x^2*log(x)^2 - 750*x*log(x)^2 + 1875*log(x)^2 - x - 5) - 400*x^2*log(x)^2/(75*x^2*log
(x)^2 - 750*x*log(x)^2 + 1875*log(x)^2 - x - 5) + 250*x*log(x)^2/(75*x^2*log(x)^2 - 750*x*log(x)^2 + 1875*log(
x)^2 - x - 5) + 2500*log(x)^2/(75*x^2*log(x)^2 - 750*x*log(x)^2 + 1875*log(x)^2 - x - 5))
________________________________________________________________________________________
maple [F] time = 0.03, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((7500*x^5-150000*x^4+1125000*x^3-3750000*x^2+4687500*x)*ln(x)^4+(-200*x^4-700*x^3+8000*x^2+2500*x)*ln(x)^
2+(-200*x^4+600*x^3+7000*x^2-15000*x-50000)*ln(x))*exp((50*x^3-400*x^2+250*x+2500)*ln(x)^2/((75*x^2-750*x+1875
)*ln(x)^2-x-5))/((5625*x^5-112500*x^4+843750*x^3-2812500*x^2+3515625*x)*ln(x)^4+(-150*x^4+750*x^3+3750*x^2-187
50*x)*ln(x)^2+x^3+10*x^2+25*x),x)
[Out]
int(((7500*x^5-150000*x^4+1125000*x^3-3750000*x^2+4687500*x)*ln(x)^4+(-200*x^4-700*x^3+8000*x^2+2500*x)*ln(x)^
2+(-200*x^4+600*x^3+7000*x^2-15000*x-50000)*ln(x))*exp((50*x^3-400*x^2+250*x+2500)*ln(x)^2/((75*x^2-750*x+1875
)*ln(x)^2-x-5))/((5625*x^5-112500*x^4+843750*x^3-2812500*x^2+3515625*x)*ln(x)^4+(-150*x^4+750*x^3+3750*x^2-187
50*x)*ln(x)^2+x^3+10*x^2+25*x),x)
________________________________________________________________________________________
maxima [B] time = 107.87, size = 118, normalized size = 3.69
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((7500*x^5-150000*x^4+1125000*x^3-3750000*x^2+4687500*x)*log(x)^4+(-200*x^4-700*x^3+8000*x^2+2500*x)
*log(x)^2+(-200*x^4+600*x^3+7000*x^2-15000*x-50000)*log(x))*exp((50*x^3-400*x^2+250*x+2500)*log(x)^2/((75*x^2-
750*x+1875)*log(x)^2-x-5))/((5625*x^5-112500*x^4+843750*x^3-2812500*x^2+3515625*x)*log(x)^4+(-150*x^4+750*x^3+
3750*x^2-18750*x)*log(x)^2+x^3+10*x^2+25*x),x, algorithm="maxima")
[Out]
2*e^(2/3*x + 2/225*x/(75*(x^2 - 10*x + 25)*log(x)^4 - (x + 5)*log(x)^2) + 34/3*x/(75*(x^2 - 10*x + 25)*log(x)^
2 - x - 5) + 2/45/(75*(x^2 - 10*x + 25)*log(x)^4 - (x + 5)*log(x)^2) - 10/(75*(x^2 - 10*x + 25)*log(x)^2 - x -
5) + 2/225/log(x)^2 + 4/3)
________________________________________________________________________________________
mupad [B] time = 4.95, size = 64, normalized size = 2.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(-(log(x)^2*(250*x - 400*x^2 + 50*x^3 + 2500))/(x - log(x)^2*(75*x^2 - 750*x + 1875) + 5))*(log(x)^2*(
2500*x + 8000*x^2 - 700*x^3 - 200*x^4) - log(x)*(15000*x - 7000*x^2 - 600*x^3 + 200*x^4 + 50000) + log(x)^4*(4
687500*x - 3750000*x^2 + 1125000*x^3 - 150000*x^4 + 7500*x^5)))/(25*x - log(x)^2*(18750*x - 3750*x^2 - 750*x^3
+ 150*x^4) + log(x)^4*(3515625*x - 2812500*x^2 + 843750*x^3 - 112500*x^4 + 5625*x^5) + 10*x^2 + x^3),x)
[Out]
2*exp(-(250*x*log(x)^2 + 2500*log(x)^2 - 400*x^2*log(x)^2 + 50*x^3*log(x)^2)/(x + 750*x*log(x)^2 - 1875*log(x)
^2 - 75*x^2*log(x)^2 + 5))
________________________________________________________________________________________
sympy [A] time = 2.01, size = 41, normalized size = 1.28
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((7500*x**5-150000*x**4+1125000*x**3-3750000*x**2+4687500*x)*ln(x)**4+(-200*x**4-700*x**3+8000*x**2+
2500*x)*ln(x)**2+(-200*x**4+600*x**3+7000*x**2-15000*x-50000)*ln(x))*exp((50*x**3-400*x**2+250*x+2500)*ln(x)**
2/((75*x**2-750*x+1875)*ln(x)**2-x-5))/((5625*x**5-112500*x**4+843750*x**3-2812500*x**2+3515625*x)*ln(x)**4+(-
150*x**4+750*x**3+3750*x**2-18750*x)*ln(x)**2+x**3+10*x**2+25*x),x)
[Out]
2*exp((50*x**3 - 400*x**2 + 250*x + 2500)*log(x)**2/(-x + (75*x**2 - 750*x + 1875)*log(x)**2 - 5))
________________________________________________________________________________________