3.73.30 e(2500+250x400x2+50x3)log2(x)5x+(1875750x+75x2)log2(x)((5000015000x+7000x2+600x3200x4)log(x)+(2500x+8000x2700x3200x4)log2(x)+(4687500x3750000x2+1125000x3150000x4+7500x5)log4(x))25x+10x2+x3+(18750x+3750x2+750x3150x4)log2(x)+(3515625x2812500x2+843750x3112500x4+5625x5)log4(x)dx

Optimal. Leaf size=32 2e4+2x35+x25(5x)2log2(x)

________________________________________________________________________________________

Rubi [F]  time = 89.53, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} exp((2500+250x400x2+50x3)log2(x)5x+(1875750x+75x2)log2(x))((5000015000x+7000x2+600x3200x4)log(x)+(2500x+8000x2700x3200x4)log2(x)+(4687500x3750000x2+1125000x3150000x4+7500x5)log4(x))25x+10x2+x3+(18750x+3750x2+750x3150x4)log2(x)+(3515625x2812500x2+843750x3112500x4+5625x5)log4(x)dx

Verification is not applicable to the result.

[In]

Int[(E^(((2500 + 250*x - 400*x^2 + 50*x^3)*Log[x]^2)/(-5 - x + (1875 - 750*x + 75*x^2)*Log[x]^2))*((-50000 - 1
5000*x + 7000*x^2 + 600*x^3 - 200*x^4)*Log[x] + (2500*x + 8000*x^2 - 700*x^3 - 200*x^4)*Log[x]^2 + (4687500*x
- 3750000*x^2 + 1125000*x^3 - 150000*x^4 + 7500*x^5)*Log[x]^4))/(25*x + 10*x^2 + x^3 + (-18750*x + 3750*x^2 +
750*x^3 - 150*x^4)*Log[x]^2 + (3515625*x - 2812500*x^2 + 843750*x^3 - 112500*x^4 + 5625*x^5)*Log[x]^4),x]

[Out]

(4*Defer[Int][E^((-50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2)), x])/3 - (1000*Defer[Int]
[1/(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))*(5 + x - 75*(-5 + x)^2*Log[x]^2)^2),
 x])/3 - (5600*Defer[Int][1/(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))*(-5 + x)*(5
 + x - 75*(-5 + x)^2*Log[x]^2)^2), x])/3 - 36*Defer[Int][x/(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-
5 + x)^2*Log[x]^2))*(5 + x - 75*(-5 + x)^2*Log[x]^2)^2), x] - (4*Defer[Int][x^2/(E^((50*(-5 + x)^2*(2 + x)*Log
[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))*(5 + x - 75*(-5 + x)^2*Log[x]^2)^2), x])/3 - 15000*Defer[Int][Log[x]/
(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))*(5 + x - 75*(-5 + x)^2*Log[x]^2)^2), x]
 - 50000*Defer[Int][Log[x]/(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))*x*(5 + x - 7
5*(-5 + x)^2*Log[x]^2)^2), x] + 7000*Defer[Int][(x*Log[x])/(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-
5 + x)^2*Log[x]^2))*(5 + x - 75*(-5 + x)^2*Log[x]^2)^2), x] + 600*Defer[Int][(x^2*Log[x])/(E^((50*(-5 + x)^2*(
2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))*(5 + x - 75*(-5 + x)^2*Log[x]^2)^2), x] - 200*Defer[Int][(x
^3*Log[x])/(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))*(5 + x - 75*(-5 + x)^2*Log[x
]^2)^2), x] - (560*Defer[Int][1/(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))*(5 - x)
*(5 + x - 75*(-5 + x)^2*Log[x]^2)), x])/3 - (68*Defer[Int][1/(E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*
(-5 + x)^2*Log[x]^2))*(-5 - x + 75*(-5 + x)^2*Log[x]^2)), x])/3

Rubi steps

integral=100exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(5x)log(x)(2(5025x+2x2+x3)+x(5+17x+2x2)log(x)75(5+x)3xlog3(x))x(5+x75(5+x)2log2(x))2dx=100exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(5x)log(x)(2(5025x+2x2+x3)+x(5+17x+2x2)log(x)75(5+x)3xlog3(x))x(5+x75(5+x)2log2(x))2dx=100(175exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(10+7x+x2)(15x+x218750log(x)+11250xlog(x)2250x2log(x)+150x3log(x))75(5+x)x(5x+1875log2(x)750xlog2(x)+75x2log2(x))2+exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(5517x)75(5+x)(5x+1875log2(x)750xlog2(x)+75x2log2(x)))dx=43exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))dx43exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(10+7x+x2)(15x+x218750log(x)+11250xlog(x)2250x2log(x)+150x3log(x))(5+x)x(5x+1875log2(x)750xlog2(x)+75x2log2(x))2dx+43exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(5517x)(5+x)(5x+1875log2(x)750xlog2(x)+75x2log2(x))dx=43exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))dx43exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(10+7x+x2)(x(15+x)150(5+x)3log(x))(5x)x(5+x75(5+x)2log2(x))2dx+43exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(5517x)(5x)(5+x75(5+x)2log2(x))dx=43exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))dx43(exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(15x+x218750log(x)+11250xlog(x)2250x2log(x)+150x3log(x))(5x+1875log2(x)750xlog2(x)+75x2log2(x))2+14exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(15x+x218750log(x)+11250xlog(x)2250x2log(x)+150x3log(x))(5+x)(5x+1875log2(x)750xlog2(x)+75x2log2(x))22exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(15x+x218750log(x)+11250xlog(x)2250x2log(x)+150x3log(x))x(5x+1875log2(x)750xlog2(x)+75x2log2(x))2)dx+43(17exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))5x+1875log2(x)750xlog2(x)+75x2log2(x)140exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(5+x)(5x+1875log2(x)750xlog2(x)+75x2log2(x)))dx=43exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))dx43exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(15x+x218750log(x)+11250xlog(x)2250x2log(x)+150x3log(x))(5x+1875log2(x)750xlog2(x)+75x2log2(x))2dx+83exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(15x+x218750log(x)+11250xlog(x)2250x2log(x)+150x3log(x))x(5x+1875log2(x)750xlog2(x)+75x2log2(x))2dx563exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(15x+x218750log(x)+11250xlog(x)2250x2log(x)+150x3log(x))(5+x)(5x+1875log2(x)750xlog2(x)+75x2log2(x))2dx683exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))5x+1875log2(x)750xlog2(x)+75x2log2(x)dx5603exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(5+x)(5x+1875log2(x)750xlog2(x)+75x2log2(x))dx=43exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))dx43exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(x(15+x)+150(5+x)3log(x))(5+x75(5+x)2log2(x))2dx+83exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(x(15+x)+150(5+x)3log(x))x(5+x75(5+x)2log2(x))2dx563exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(x(15+x)150(5+x)3log(x))(5x)(5+x75(5+x)2log2(x))2dx683exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))5x+75(5+x)2log2(x)dx5603exp(50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x))(5x)(5+x75(5+x)2log2(x))dx=Rest of rules removed due to large latex content

________________________________________________________________________________________

Mathematica [A]  time = 0.20, size = 34, normalized size = 1.06 2e50(5+x)2(2+x)log2(x)5+x75(5+x)2log2(x)

Antiderivative was successfully verified.

[In]

Integrate[(E^(((2500 + 250*x - 400*x^2 + 50*x^3)*Log[x]^2)/(-5 - x + (1875 - 750*x + 75*x^2)*Log[x]^2))*((-500
00 - 15000*x + 7000*x^2 + 600*x^3 - 200*x^4)*Log[x] + (2500*x + 8000*x^2 - 700*x^3 - 200*x^4)*Log[x]^2 + (4687
500*x - 3750000*x^2 + 1125000*x^3 - 150000*x^4 + 7500*x^5)*Log[x]^4))/(25*x + 10*x^2 + x^3 + (-18750*x + 3750*
x^2 + 750*x^3 - 150*x^4)*Log[x]^2 + (3515625*x - 2812500*x^2 + 843750*x^3 - 112500*x^4 + 5625*x^5)*Log[x]^4),x
]

[Out]

2/E^((50*(-5 + x)^2*(2 + x)*Log[x]^2)/(5 + x - 75*(-5 + x)^2*Log[x]^2))

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 43, normalized size = 1.34 2e(50(x38x2+5x+50)log(x)275(x210x+25)log(x)2x5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((7500*x^5-150000*x^4+1125000*x^3-3750000*x^2+4687500*x)*log(x)^4+(-200*x^4-700*x^3+8000*x^2+2500*x)
*log(x)^2+(-200*x^4+600*x^3+7000*x^2-15000*x-50000)*log(x))*exp((50*x^3-400*x^2+250*x+2500)*log(x)^2/((75*x^2-
750*x+1875)*log(x)^2-x-5))/((5625*x^5-112500*x^4+843750*x^3-2812500*x^2+3515625*x)*log(x)^4+(-150*x^4+750*x^3+
3750*x^2-18750*x)*log(x)^2+x^3+10*x^2+25*x),x, algorithm="fricas")

[Out]

2*e^(50*(x^3 - 8*x^2 + 5*x + 50)*log(x)^2/(75*(x^2 - 10*x + 25)*log(x)^2 - x - 5))

________________________________________________________________________________________

giac [B]  time = 0.63, size = 151, normalized size = 4.72 2e(50x3log(x)275x2log(x)2750xlog(x)2+1875log(x)2x5400x2log(x)275x2log(x)2750xlog(x)2+1875log(x)2x5+250xlog(x)275x2log(x)2750xlog(x)2+1875log(x)2x5+2500log(x)275x2log(x)2750xlog(x)2+1875log(x)2x5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((7500*x^5-150000*x^4+1125000*x^3-3750000*x^2+4687500*x)*log(x)^4+(-200*x^4-700*x^3+8000*x^2+2500*x)
*log(x)^2+(-200*x^4+600*x^3+7000*x^2-15000*x-50000)*log(x))*exp((50*x^3-400*x^2+250*x+2500)*log(x)^2/((75*x^2-
750*x+1875)*log(x)^2-x-5))/((5625*x^5-112500*x^4+843750*x^3-2812500*x^2+3515625*x)*log(x)^4+(-150*x^4+750*x^3+
3750*x^2-18750*x)*log(x)^2+x^3+10*x^2+25*x),x, algorithm="giac")

[Out]

2*e^(50*x^3*log(x)^2/(75*x^2*log(x)^2 - 750*x*log(x)^2 + 1875*log(x)^2 - x - 5) - 400*x^2*log(x)^2/(75*x^2*log
(x)^2 - 750*x*log(x)^2 + 1875*log(x)^2 - x - 5) + 250*x*log(x)^2/(75*x^2*log(x)^2 - 750*x*log(x)^2 + 1875*log(
x)^2 - x - 5) + 2500*log(x)^2/(75*x^2*log(x)^2 - 750*x*log(x)^2 + 1875*log(x)^2 - x - 5))

________________________________________________________________________________________

maple [F]  time = 0.03, size = 0, normalized size = 0.00 ((7500x5150000x4+1125000x33750000x2+4687500x)ln(x)4+(200x4700x3+8000x2+2500x)ln(x)2+(200x4+600x3+7000x215000x50000)ln(x))e(50x3400x2+250x+2500)ln(x)2(75x2750x+1875)ln(x)2x5(5625x5112500x4+843750x32812500x2+3515625x)ln(x)4+(150x4+750x3+3750x218750x)ln(x)2+x3+10x2+25xdx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((7500*x^5-150000*x^4+1125000*x^3-3750000*x^2+4687500*x)*ln(x)^4+(-200*x^4-700*x^3+8000*x^2+2500*x)*ln(x)^
2+(-200*x^4+600*x^3+7000*x^2-15000*x-50000)*ln(x))*exp((50*x^3-400*x^2+250*x+2500)*ln(x)^2/((75*x^2-750*x+1875
)*ln(x)^2-x-5))/((5625*x^5-112500*x^4+843750*x^3-2812500*x^2+3515625*x)*ln(x)^4+(-150*x^4+750*x^3+3750*x^2-187
50*x)*ln(x)^2+x^3+10*x^2+25*x),x)

[Out]

int(((7500*x^5-150000*x^4+1125000*x^3-3750000*x^2+4687500*x)*ln(x)^4+(-200*x^4-700*x^3+8000*x^2+2500*x)*ln(x)^
2+(-200*x^4+600*x^3+7000*x^2-15000*x-50000)*ln(x))*exp((50*x^3-400*x^2+250*x+2500)*ln(x)^2/((75*x^2-750*x+1875
)*ln(x)^2-x-5))/((5625*x^5-112500*x^4+843750*x^3-2812500*x^2+3515625*x)*ln(x)^4+(-150*x^4+750*x^3+3750*x^2-187
50*x)*ln(x)^2+x^3+10*x^2+25*x),x)

________________________________________________________________________________________

maxima [B]  time = 107.87, size = 118, normalized size = 3.69 2e(23x+2x225(75(x210x+25)log(x)4(x+5)log(x)2)+34x3(75(x210x+25)log(x)2x5)+245(75(x210x+25)log(x)4(x+5)log(x)2)1075(x210x+25)log(x)2x5+2225log(x)2+43)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((7500*x^5-150000*x^4+1125000*x^3-3750000*x^2+4687500*x)*log(x)^4+(-200*x^4-700*x^3+8000*x^2+2500*x)
*log(x)^2+(-200*x^4+600*x^3+7000*x^2-15000*x-50000)*log(x))*exp((50*x^3-400*x^2+250*x+2500)*log(x)^2/((75*x^2-
750*x+1875)*log(x)^2-x-5))/((5625*x^5-112500*x^4+843750*x^3-2812500*x^2+3515625*x)*log(x)^4+(-150*x^4+750*x^3+
3750*x^2-18750*x)*log(x)^2+x^3+10*x^2+25*x),x, algorithm="maxima")

[Out]

2*e^(2/3*x + 2/225*x/(75*(x^2 - 10*x + 25)*log(x)^4 - (x + 5)*log(x)^2) + 34/3*x/(75*(x^2 - 10*x + 25)*log(x)^
2 - x - 5) + 2/45/(75*(x^2 - 10*x + 25)*log(x)^4 - (x + 5)*log(x)^2) - 10/(75*(x^2 - 10*x + 25)*log(x)^2 - x -
 5) + 2/225/log(x)^2 + 4/3)

________________________________________________________________________________________

mupad [B]  time = 4.95, size = 64, normalized size = 2.00 2e50x3ln(x)2400x2ln(x)2+250xln(x)2+2500ln(x)275x2ln(x)2+750xln(x)2+x1875ln(x)2+5

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-(log(x)^2*(250*x - 400*x^2 + 50*x^3 + 2500))/(x - log(x)^2*(75*x^2 - 750*x + 1875) + 5))*(log(x)^2*(
2500*x + 8000*x^2 - 700*x^3 - 200*x^4) - log(x)*(15000*x - 7000*x^2 - 600*x^3 + 200*x^4 + 50000) + log(x)^4*(4
687500*x - 3750000*x^2 + 1125000*x^3 - 150000*x^4 + 7500*x^5)))/(25*x - log(x)^2*(18750*x - 3750*x^2 - 750*x^3
 + 150*x^4) + log(x)^4*(3515625*x - 2812500*x^2 + 843750*x^3 - 112500*x^4 + 5625*x^5) + 10*x^2 + x^3),x)

[Out]

2*exp(-(250*x*log(x)^2 + 2500*log(x)^2 - 400*x^2*log(x)^2 + 50*x^3*log(x)^2)/(x + 750*x*log(x)^2 - 1875*log(x)
^2 - 75*x^2*log(x)^2 + 5))

________________________________________________________________________________________

sympy [A]  time = 2.01, size = 41, normalized size = 1.28 2e(50x3400x2+250x+2500)log(x)2x+(75x2750x+1875)log(x)25

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((7500*x**5-150000*x**4+1125000*x**3-3750000*x**2+4687500*x)*ln(x)**4+(-200*x**4-700*x**3+8000*x**2+
2500*x)*ln(x)**2+(-200*x**4+600*x**3+7000*x**2-15000*x-50000)*ln(x))*exp((50*x**3-400*x**2+250*x+2500)*ln(x)**
2/((75*x**2-750*x+1875)*ln(x)**2-x-5))/((5625*x**5-112500*x**4+843750*x**3-2812500*x**2+3515625*x)*ln(x)**4+(-
150*x**4+750*x**3+3750*x**2-18750*x)*ln(x)**2+x**3+10*x**2+25*x),x)

[Out]

2*exp((50*x**3 - 400*x**2 + 250*x + 2500)*log(x)**2/(-x + (75*x**2 - 750*x + 1875)*log(x)**2 - 5))

________________________________________________________________________________________