3.73.31 20+(7+4x2x2)log2(2)(12x+x2)log2(2)dx

Optimal. Leaf size=23 2x+5(x+4log2(2))1x

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 21, normalized size of antiderivative = 0.91, number of steps used = 4, number of rules used = 3, integrand size = 32, number of rulesintegrand size = 0.094, Rules used = {12, 27, 1850} 2x5(14log2(2))1x

Antiderivative was successfully verified.

[In]

Int[(20 + (-7 + 4*x - 2*x^2)*Log[2]^2)/((1 - 2*x + x^2)*Log[2]^2),x]

[Out]

-2*x - (5*(1 - 4/Log[2]^2))/(1 - x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 1850

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^n)^p, x], x] /; FreeQ[
{a, b, n}, x] && PolyQ[Pq, x] && (IGtQ[p, 0] || EqQ[n, 1])

Rubi steps

integral=20+(7+4x2x2)log2(2)12x+x2dxlog2(2)=20+(7+4x2x2)log2(2)(1+x)2dxlog2(2)=(2log2(2)5(4+log2(2))(1+x)2)dxlog2(2)=2x5(14log2(2))1x

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 28, normalized size = 1.22 2(1+x)log2(2)+5(4+log2(2))1+xlog2(2)

Antiderivative was successfully verified.

[In]

Integrate[(20 + (-7 + 4*x - 2*x^2)*Log[2]^2)/((1 - 2*x + x^2)*Log[2]^2),x]

[Out]

(-2*(-1 + x)*Log[2]^2 + (5*(-4 + Log[2]^2))/(-1 + x))/Log[2]^2

________________________________________________________________________________________

fricas [A]  time = 0.94, size = 28, normalized size = 1.22 (2x22x5)log(2)2+20(x1)log(2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2+4*x-7)*log(2)^2+20)/(x^2-2*x+1)/log(2)^2,x, algorithm="fricas")

[Out]

-((2*x^2 - 2*x - 5)*log(2)^2 + 20)/((x - 1)*log(2)^2)

________________________________________________________________________________________

giac [A]  time = 0.25, size = 27, normalized size = 1.17 2xlog(2)25(log(2)24)x1log(2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2+4*x-7)*log(2)^2+20)/(x^2-2*x+1)/log(2)^2,x, algorithm="giac")

[Out]

-(2*x*log(2)^2 - 5*(log(2)^2 - 4)/(x - 1))/log(2)^2

________________________________________________________________________________________

maple [A]  time = 0.17, size = 23, normalized size = 1.00




method result size



risch 2x+5x120ln(2)2(x1) 23
gosper 2x2ln(2)2+207ln(2)2ln(2)2(x1) 29
default 2xln(2)25ln(2)2+20x1ln(2)2 29
norman 2x2ln(2)+7ln(2)220ln(2)(x1)ln(2) 32
meijerg 20xln(2)2(1x)2x(3x+6)3(1x)3x1x 41



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-2*x^2+4*x-7)*ln(2)^2+20)/(x^2-2*x+1)/ln(2)^2,x,method=_RETURNVERBOSE)

[Out]

-2*x+5/(x-1)-20/ln(2)^2/(x-1)

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 27, normalized size = 1.17 2xlog(2)25(log(2)24)x1log(2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2+4*x-7)*log(2)^2+20)/(x^2-2*x+1)/log(2)^2,x, algorithm="maxima")

[Out]

-(2*x*log(2)^2 - 5*(log(2)^2 - 4)/(x - 1))/log(2)^2

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 22, normalized size = 0.96 5ln(2)220ln(2)2(x1)2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(2)^2*(2*x^2 - 4*x + 7) - 20)/(log(2)^2*(x^2 - 2*x + 1)),x)

[Out]

(5*log(2)^2 - 20)/(log(2)^2*(x - 1)) - 2*x

________________________________________________________________________________________

sympy [A]  time = 0.19, size = 24, normalized size = 1.04 2x205log(2)2xlog(2)2log(2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x**2+4*x-7)*ln(2)**2+20)/(x**2-2*x+1)/ln(2)**2,x)

[Out]

-2*x - (20 - 5*log(2)**2)/(x*log(2)**2 - log(2)**2)

________________________________________________________________________________________