3.73.33
Optimal. Leaf size=18
________________________________________________________________________________________
Rubi [F] time = 16.39, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^(E^((1 + 8*x^2 + 2*x^3 + x^2*Log[-2 + x])/x) + (1 + 8*x^2 + 2*x^3 + x^2*Log[-2 + x])/x)*(2 - x - 16*x^2
+ x^3 + 4*x^4 + (-2*x^2 + x^3)*Log[-2 + x]))/(-2*x^2 + x^3),x]
[Out]
-16*Defer[Int][E^(E^(x^(-1) + 8*x + 2*x^2)*(-2 + x)^x + x^(-1) + 8*x + 2*x^2)*(-2 + x)^(-1 + x), x] + 2*Defer[
Int][(E^(E^(x^(-1) + 8*x + 2*x^2)*(-2 + x)^x + x^(-1) + 8*x + 2*x^2)*(-2 + x)^(-1 + x))/x^2, x] - Defer[Int][(
E^(E^(x^(-1) + 8*x + 2*x^2)*(-2 + x)^x + x^(-1) + 8*x + 2*x^2)*(-2 + x)^(-1 + x))/x, x] + Defer[Int][E^(E^(x^(
-1) + 8*x + 2*x^2)*(-2 + x)^x + x^(-1) + 8*x + 2*x^2)*(-2 + x)^(-1 + x)*x, x] + 4*Defer[Int][E^(E^(x^(-1) + 8*
x + 2*x^2)*(-2 + x)^x + x^(-1) + 8*x + 2*x^2)*(-2 + x)^(-1 + x)*x^2, x] + Defer[Int][E^(E^((1 + 8*x^2 + 2*x^3
+ x^2*Log[-2 + x])/x) + (1 + 8*x^2 + 2*x^3 + x^2*Log[-2 + x])/x)*Log[-2 + x], x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 5.07, size = 22, normalized size = 1.22
Antiderivative was successfully verified.
[In]
Integrate[(E^(E^((1 + 8*x^2 + 2*x^3 + x^2*Log[-2 + x])/x) + (1 + 8*x^2 + 2*x^3 + x^2*Log[-2 + x])/x)*(2 - x -
16*x^2 + x^3 + 4*x^4 + (-2*x^2 + x^3)*Log[-2 + x]))/(-2*x^2 + x^3),x]
[Out]
E^(E^(x^(-1) + 8*x + 2*x^2)*(-2 + x)^x)
________________________________________________________________________________________
fricas [B] time = 1.02, size = 78, normalized size = 4.33
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^3-2*x^2)*log(x-2)+4*x^4+x^3-16*x^2-x+2)*exp((x^2*log(x-2)+2*x^3+8*x^2+1)/x)*exp(exp((x^2*log(x-2
)+2*x^3+8*x^2+1)/x))/(x^3-2*x^2),x, algorithm="fricas")
[Out]
e^((2*x^3 + x^2*log(x - 2) + 8*x^2 + x*e^((2*x^3 + x^2*log(x - 2) + 8*x^2 + 1)/x) + 1)/x - (2*x^3 + x^2*log(x
- 2) + 8*x^2 + 1)/x)
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^3-2*x^2)*log(x-2)+4*x^4+x^3-16*x^2-x+2)*exp((x^2*log(x-2)+2*x^3+8*x^2+1)/x)*exp(exp((x^2*log(x-2
)+2*x^3+8*x^2+1)/x))/(x^3-2*x^2),x, algorithm="giac")
[Out]
integrate((4*x^4 + x^3 - 16*x^2 + (x^3 - 2*x^2)*log(x - 2) - x + 2)*e^((2*x^3 + x^2*log(x - 2) + 8*x^2 + 1)/x
+ e^((2*x^3 + x^2*log(x - 2) + 8*x^2 + 1)/x))/(x^3 - 2*x^2), x)
________________________________________________________________________________________
maple [A] time = 0.13, size = 25, normalized size = 1.39
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((x^3-2*x^2)*ln(x-2)+4*x^4+x^3-16*x^2-x+2)*exp((x^2*ln(x-2)+2*x^3+8*x^2+1)/x)*exp(exp((x^2*ln(x-2)+2*x^3+8
*x^2+1)/x))/(x^3-2*x^2),x,method=_RETURNVERBOSE)
[Out]
exp((x-2)^x*exp((2*x^3+8*x^2+1)/x))
________________________________________________________________________________________
maxima [A] time = 0.47, size = 20, normalized size = 1.11
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^3-2*x^2)*log(x-2)+4*x^4+x^3-16*x^2-x+2)*exp((x^2*log(x-2)+2*x^3+8*x^2+1)/x)*exp(exp((x^2*log(x-2
)+2*x^3+8*x^2+1)/x))/(x^3-2*x^2),x, algorithm="maxima")
[Out]
e^(e^(2*x^2 + x*log(x - 2) + 8*x + 1/x))
________________________________________________________________________________________
mupad [B] time = 4.54, size = 21, normalized size = 1.17
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(exp((x^2*log(x - 2) + 8*x^2 + 2*x^3 + 1)/x))*exp((x^2*log(x - 2) + 8*x^2 + 2*x^3 + 1)/x)*(x + log(x -
2)*(2*x^2 - x^3) + 16*x^2 - x^3 - 4*x^4 - 2))/(2*x^2 - x^3),x)
[Out]
exp(exp(8*x)*exp(1/x)*exp(2*x^2)*(x - 2)^x)
________________________________________________________________________________________
sympy [A] time = 1.91, size = 24, normalized size = 1.33
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x**3-2*x**2)*ln(x-2)+4*x**4+x**3-16*x**2-x+2)*exp((x**2*ln(x-2)+2*x**3+8*x**2+1)/x)*exp(exp((x**2*
ln(x-2)+2*x**3+8*x**2+1)/x))/(x**3-2*x**2),x)
[Out]
exp(exp((2*x**3 + x**2*log(x - 2) + 8*x**2 + 1)/x))
________________________________________________________________________________________