3.73.33 ee1+8x2+2x3+x2log(2+x)x+1+8x2+2x3+x2log(2+x)x(2x16x2+x3+4x4+(2x2+x3)log(2+x))2x2+x3dx

Optimal. Leaf size=18 eex(8+1x2+2x+log(2+x))

________________________________________________________________________________________

Rubi [F]  time = 16.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} exp(e1+8x2+2x3+x2log(2+x)x+1+8x2+2x3+x2log(2+x)x)(2x16x2+x3+4x4+(2x2+x3)log(2+x))2x2+x3dx

Verification is not applicable to the result.

[In]

Int[(E^(E^((1 + 8*x^2 + 2*x^3 + x^2*Log[-2 + x])/x) + (1 + 8*x^2 + 2*x^3 + x^2*Log[-2 + x])/x)*(2 - x - 16*x^2
 + x^3 + 4*x^4 + (-2*x^2 + x^3)*Log[-2 + x]))/(-2*x^2 + x^3),x]

[Out]

-16*Defer[Int][E^(E^(x^(-1) + 8*x + 2*x^2)*(-2 + x)^x + x^(-1) + 8*x + 2*x^2)*(-2 + x)^(-1 + x), x] + 2*Defer[
Int][(E^(E^(x^(-1) + 8*x + 2*x^2)*(-2 + x)^x + x^(-1) + 8*x + 2*x^2)*(-2 + x)^(-1 + x))/x^2, x] - Defer[Int][(
E^(E^(x^(-1) + 8*x + 2*x^2)*(-2 + x)^x + x^(-1) + 8*x + 2*x^2)*(-2 + x)^(-1 + x))/x, x] + Defer[Int][E^(E^(x^(
-1) + 8*x + 2*x^2)*(-2 + x)^x + x^(-1) + 8*x + 2*x^2)*(-2 + x)^(-1 + x)*x, x] + 4*Defer[Int][E^(E^(x^(-1) + 8*
x + 2*x^2)*(-2 + x)^x + x^(-1) + 8*x + 2*x^2)*(-2 + x)^(-1 + x)*x^2, x] + Defer[Int][E^(E^((1 + 8*x^2 + 2*x^3
+ x^2*Log[-2 + x])/x) + (1 + 8*x^2 + 2*x^3 + x^2*Log[-2 + x])/x)*Log[-2 + x], x]

Rubi steps

integral=exp(e1+8x2+2x3+x2log(2+x)x+1+8x2+2x3+x2log(2+x)x)(2x16x2+x3+4x4+(2x2+x3)log(2+x))(2+x)x2dx=(exp(e1+8x2+2x3+x2log(2+x)x+1+8x2+2x3+x2log(2+x)x)(2x16x2+x3+4x4)(2+x)x2+exp(e1+8x2+2x3+x2log(2+x)x+1+8x2+2x3+x2log(2+x)x)log(2+x))dx=exp(e1+8x2+2x3+x2log(2+x)x+1+8x2+2x3+x2log(2+x)x)(2x16x2+x3+4x4)(2+x)x2dx+exp(e1+8x2+2x3+x2log(2+x)x+1+8x2+2x3+x2log(2+x)x)log(2+x)dx=exp(e1x+8x+2x2(2+x)x+1x+8x+2x2)(2+x)1+x(2x16x2+x3+4x4)x2dx+exp(e1+8x2+2x3+x2log(2+x)x+1+8x2+2x3+x2log(2+x)x)log(2+x)dx=(16exp(e1x+8x+2x2(2+x)x+1x+8x+2x2)(2+x)1+x+2exp(e1x+8x+2x2(2+x)x+1x+8x+2x2)(2+x)1+xx2exp(e1x+8x+2x2(2+x)x+1x+8x+2x2)(2+x)1+xx+exp(e1x+8x+2x2(2+x)x+1x+8x+2x2)(2+x)1+xx+4exp(e1x+8x+2x2(2+x)x+1x+8x+2x2)(2+x)1+xx2)dx+exp(e1+8x2+2x3+x2log(2+x)x+1+8x2+2x3+x2log(2+x)x)log(2+x)dx=2exp(e1x+8x+2x2(2+x)x+1x+8x+2x2)(2+x)1+xx2dx+4exp(e1x+8x+2x2(2+x)x+1x+8x+2x2)(2+x)1+xx2dx16exp(e1x+8x+2x2(2+x)x+1x+8x+2x2)(2+x)1+xdxexp(e1x+8x+2x2(2+x)x+1x+8x+2x2)(2+x)1+xxdx+exp(e1x+8x+2x2(2+x)x+1x+8x+2x2)(2+x)1+xxdx+exp(e1+8x2+2x3+x2log(2+x)x+1+8x2+2x3+x2log(2+x)x)log(2+x)dx

________________________________________________________________________________________

Mathematica [A]  time = 5.07, size = 22, normalized size = 1.22 ee1x+8x+2x2(2+x)x

Antiderivative was successfully verified.

[In]

Integrate[(E^(E^((1 + 8*x^2 + 2*x^3 + x^2*Log[-2 + x])/x) + (1 + 8*x^2 + 2*x^3 + x^2*Log[-2 + x])/x)*(2 - x -
16*x^2 + x^3 + 4*x^4 + (-2*x^2 + x^3)*Log[-2 + x]))/(-2*x^2 + x^3),x]

[Out]

E^(E^(x^(-1) + 8*x + 2*x^2)*(-2 + x)^x)

________________________________________________________________________________________

fricas [B]  time = 1.02, size = 78, normalized size = 4.33 e(2x3+x2log(x2)+8x2+xe(2x3+x2log(x2)+8x2+1x)+1x2x3+x2log(x2)+8x2+1x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x^3-2*x^2)*log(x-2)+4*x^4+x^3-16*x^2-x+2)*exp((x^2*log(x-2)+2*x^3+8*x^2+1)/x)*exp(exp((x^2*log(x-2
)+2*x^3+8*x^2+1)/x))/(x^3-2*x^2),x, algorithm="fricas")

[Out]

e^((2*x^3 + x^2*log(x - 2) + 8*x^2 + x*e^((2*x^3 + x^2*log(x - 2) + 8*x^2 + 1)/x) + 1)/x - (2*x^3 + x^2*log(x
- 2) + 8*x^2 + 1)/x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 (4x4+x316x2+(x32x2)log(x2)x+2)e(2x3+x2log(x2)+8x2+1x+e(2x3+x2log(x2)+8x2+1x))x32x2dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x^3-2*x^2)*log(x-2)+4*x^4+x^3-16*x^2-x+2)*exp((x^2*log(x-2)+2*x^3+8*x^2+1)/x)*exp(exp((x^2*log(x-2
)+2*x^3+8*x^2+1)/x))/(x^3-2*x^2),x, algorithm="giac")

[Out]

integrate((4*x^4 + x^3 - 16*x^2 + (x^3 - 2*x^2)*log(x - 2) - x + 2)*e^((2*x^3 + x^2*log(x - 2) + 8*x^2 + 1)/x
+ e^((2*x^3 + x^2*log(x - 2) + 8*x^2 + 1)/x))/(x^3 - 2*x^2), x)

________________________________________________________________________________________

maple [A]  time = 0.13, size = 25, normalized size = 1.39




method result size



risch e(x2)xe2x3+8x2+1x 25



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x^3-2*x^2)*ln(x-2)+4*x^4+x^3-16*x^2-x+2)*exp((x^2*ln(x-2)+2*x^3+8*x^2+1)/x)*exp(exp((x^2*ln(x-2)+2*x^3+8
*x^2+1)/x))/(x^3-2*x^2),x,method=_RETURNVERBOSE)

[Out]

exp((x-2)^x*exp((2*x^3+8*x^2+1)/x))

________________________________________________________________________________________

maxima [A]  time = 0.47, size = 20, normalized size = 1.11 e(e(2x2+xlog(x2)+8x+1x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x^3-2*x^2)*log(x-2)+4*x^4+x^3-16*x^2-x+2)*exp((x^2*log(x-2)+2*x^3+8*x^2+1)/x)*exp(exp((x^2*log(x-2
)+2*x^3+8*x^2+1)/x))/(x^3-2*x^2),x, algorithm="maxima")

[Out]

e^(e^(2*x^2 + x*log(x - 2) + 8*x + 1/x))

________________________________________________________________________________________

mupad [B]  time = 4.54, size = 21, normalized size = 1.17 ee8xe1/xe2x2(x2)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(exp((x^2*log(x - 2) + 8*x^2 + 2*x^3 + 1)/x))*exp((x^2*log(x - 2) + 8*x^2 + 2*x^3 + 1)/x)*(x + log(x -
 2)*(2*x^2 - x^3) + 16*x^2 - x^3 - 4*x^4 - 2))/(2*x^2 - x^3),x)

[Out]

exp(exp(8*x)*exp(1/x)*exp(2*x^2)*(x - 2)^x)

________________________________________________________________________________________

sympy [A]  time = 1.91, size = 24, normalized size = 1.33 ee2x3+x2log(x2)+8x2+1x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x**3-2*x**2)*ln(x-2)+4*x**4+x**3-16*x**2-x+2)*exp((x**2*ln(x-2)+2*x**3+8*x**2+1)/x)*exp(exp((x**2*
ln(x-2)+2*x**3+8*x**2+1)/x))/(x**3-2*x**2),x)

[Out]

exp(exp((2*x**3 + x**2*log(x - 2) + 8*x**2 + 1)/x))

________________________________________________________________________________________