3.73.32 6+6x24x2+ee5x2+x2log(x)(4x3+e5x2+x2log(x)(9x3+9x4+(2x32x4)log(x)))+(6+12x+ee5x2+x2log(x)(x+2x2))log(6+ee5x2+x2log(x)xx)6x212x3+6x4+ee5x2+x2log(x)(x32x4+x5)dx

Optimal. Leaf size=33 4x+log(eex2(5+log(x))+6x)xx2

________________________________________________________________________________________

Rubi [F]  time = 15.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 6+6x24x2+ee5x2+x2log(x)(4x3+e5x2+x2log(x)(9x3+9x4+(2x32x4)log(x)))+(6+12x+ee5x2+x2log(x)(x+2x2))log(6+ee5x2+x2log(x)xx)6x212x3+6x4+ee5x2+x2log(x)(x32x4+x5)dx

Verification is not applicable to the result.

[In]

Int[(-6 + 6*x - 24*x^2 + E^E^(-5*x^2 + x^2*Log[x])*(-4*x^3 + E^(-5*x^2 + x^2*Log[x])*(-9*x^3 + 9*x^4 + (2*x^3
- 2*x^4)*Log[x])) + (-6 + 12*x + E^E^(-5*x^2 + x^2*Log[x])*(-x + 2*x^2))*Log[(6 + E^E^(-5*x^2 + x^2*Log[x])*x)
/x])/(6*x^2 - 12*x^3 + 6*x^4 + E^E^(-5*x^2 + x^2*Log[x])*(x^3 - 2*x^4 + x^5)),x]

[Out]

Log[E^(x^x^2/E^(5*x^2)) + 6/x]/((1 - x)*x) - 24*Defer[Int][1/((-1 + x)^2*(6 + E^(x^x^2/E^(5*x^2))*x)), x] - 4*
Defer[Int][E^(x^x^2/E^(5*x^2))/((-1 + x)^2*(6 + E^(x^x^2/E^(5*x^2))*x)), x] - 4*Defer[Int][E^(x^x^2/E^(5*x^2))
/((-1 + x)*(6 + E^(x^x^2/E^(5*x^2))*x)), x]

Rubi steps

integral=6+6x24x2+ee5x2+x2log(x)(4x3+e5x2+x2log(x)(9x3+9x4+(2x32x4)log(x)))+(6+12x+ee5x2+x2log(x)(x+2x2))log(6+ee5x2+x2log(x)xx)(1x)2x2(6+ee5x2xx2x)dx=(24(1+x)2(6+ee5x2xx2x)6(1+x)2x2(6+ee5x2xx2x)+6(1+x)2x(6+ee5x2xx2x)4ee5x2xx2x(1+x)2(6+ee5x2xx2x)+(1+2x)log(ee5x2xx2+6x)(1+x)2x2e5x2+e5x2xx2x1+x2(9+2log(x))(1+x)(6+ee5x2xx2x))dx=(4ee5x2xx2x(1+x)2(6+ee5x2xx2x)dx)61(1+x)2x2(6+ee5x2xx2x)dx+61(1+x)2x(6+ee5x2xx2x)dx241(1+x)2(6+ee5x2xx2x)dx+(1+2x)log(ee5x2xx2+6x)(1+x)2x2dxe5x2+e5x2xx2x1+x2(9+2log(x))(1+x)(6+ee5x2xx2x)dx=log(ee5x2xx2+6x)(1x)x4(ee5x2xx2(1+x)2(6+ee5x2xx2x)+ee5x2xx2(1+x)(6+ee5x2xx2x))dx+6(1(1+x)2(6+ee5x2xx2x)1(1+x)(6+ee5x2xx2x)+1x(6+ee5x2xx2x))dx6(1(1+x)2(6+ee5x2xx2x)2(1+x)(6+ee5x2xx2x)+1x2(6+ee5x2xx2x)+2x(6+ee5x2xx2x))dx241(1+x)2(6+ee5x2xx2x)dxe5x2(6e5x29ee5x2xx2x3+x2+2ee5x2xx2x3+x2log(x))(1x)x2(6+ee5x2xx2x)dx(9e5x2+e5x2xx2x1+x2(1+x)(6+ee5x2xx2x)+2e5x2+e5x2xx2x1+x2log(x)(1+x)(6+ee5x2xx2x))dx=log(ee5x2xx2+6x)(1x)x2e5x2+e5x2xx2x1+x2log(x)(1+x)(6+ee5x2xx2x)dx4ee5x2xx2(1+x)2(6+ee5x2xx2x)dx4ee5x2xx2(1+x)(6+ee5x2xx2x)dx61(1+x)(6+ee5x2xx2x)dx61x2(6+ee5x2xx2x)dx+61x(6+ee5x2xx2x)dx+9e5x2+e5x2xx2x1+x2(1+x)(6+ee5x2xx2x)dx+121(1+x)(6+ee5x2xx2x)dx121x(6+ee5x2xx2x)dx241(1+x)2(6+ee5x2xx2x)dx(6(1+x)x2(6+ee5x2xx2x)e5x2+e5x2xx2x1+x2(9+2log(x))(1+x)(6+ee5x2xx2x))dx=log(ee5x2xx2+6x)(1x)x+2e5x2+e5x2xx2x1+x2(1+x)(6+ee5x2xx2x)dxxdx4ee5x2xx2(1+x)2(6+ee5x2xx2x)dx4ee5x2xx2(1+x)(6+ee5x2xx2x)dx61(1+x)(6+ee5x2xx2x)dx61x2(6+ee5x2xx2x)dx61(1+x)x2(6+ee5x2xx2x)dx+61x(6+ee5x2xx2x)dx+9e5x2+e5x2xx2x1+x2(1+x)(6+ee5x2xx2x)dx+121(1+x)(6+ee5x2xx2x)dx121x(6+ee5x2xx2x)dx241(1+x)2(6+ee5x2xx2x)dx(2log(x))e5x2+e5x2xx2x1+x2(1+x)(6+ee5x2xx2x)dx+e5x2+e5x2xx2x1+x2(9+2log(x))(1+x)(6+ee5x2xx2x)dx=log(ee5x2xx2+6x)(1x)x+2e5x2+e5x2xx2x1+x2(1+x)(6+ee5x2xx2x)dxxdx4ee5x2xx2(1+x)2(6+ee5x2xx2x)dx4ee5x2xx2(1+x)(6+ee5x2xx2x)dx61(1+x)(6+ee5x2xx2x)dx61x2(6+ee5x2xx2x)dx+61x(6+ee5x2xx2x)dx6(1(1+x)(6+ee5x2xx2x)1x2(6+ee5x2xx2x)1x(6+ee5x2xx2x))dx+9e5x2+e5x2xx2x1+x2(1+x)(6+ee5x2xx2x)dx+121(1+x)(6+ee5x2xx2x)dx121x(6+ee5x2xx2x)dx241(1+x)2(6+ee5x2xx2x)dx(2log(x))e5x2+e5x2xx2x1+x2(1+x)(6+ee5x2xx2x)dx+(9e5x2+e5x2xx2x1+x2(1+x)(6+ee5x2xx2x)+2e5x2+e5x2xx2x1+x2log(x)(1+x)(6+ee5x2xx2x))dx=log(ee5x2xx2+6x)(1x)x+2e5x2+e5x2xx2x1+x2log(x)(1+x)(6+ee5x2xx2x)dx+2e5x2+e5x2xx2x1+x2(1+x)(6+ee5x2xx2x)dxxdx4ee5x2xx2(1+x)2(6+ee5x2xx2x)dx4ee5x2xx2(1+x)(6+ee5x2xx2x)dx2(61(1+x)(6+ee5x2xx2x)dx)+2(61x(6+ee5x2xx2x)dx)+121(1+x)(6+ee5x2xx2x)dx121x(6+ee5x2xx2x)dx241(1+x)2(6+ee5x2xx2x)dx(2log(x))e5x2+e5x2xx2x1+x2(1+x)(6+ee5x2xx2x)dx=log(ee5x2xx2+6x)(1x)x4ee5x2xx2(1+x)2(6+ee5x2xx2x)dx4ee5x2xx2(1+x)(6+ee5x2xx2x)dx2(61(1+x)(6+ee5x2xx2x)dx)+2(61x(6+ee5x2xx2x)dx)+121(1+x)(6+ee5x2xx2x)dx121x(6+ee5x2xx2x)dx241(1+x)2(6+ee5x2xx2x)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.31, size = 37, normalized size = 1.12 4xlog(ee5x2xx2+6x)(1+x)x

Antiderivative was successfully verified.

[In]

Integrate[(-6 + 6*x - 24*x^2 + E^E^(-5*x^2 + x^2*Log[x])*(-4*x^3 + E^(-5*x^2 + x^2*Log[x])*(-9*x^3 + 9*x^4 + (
2*x^3 - 2*x^4)*Log[x])) + (-6 + 12*x + E^E^(-5*x^2 + x^2*Log[x])*(-x + 2*x^2))*Log[(6 + E^E^(-5*x^2 + x^2*Log[
x])*x)/x])/(6*x^2 - 12*x^3 + 6*x^4 + E^E^(-5*x^2 + x^2*Log[x])*(x^3 - 2*x^4 + x^5)),x]

[Out]

(4*x - Log[E^(x^x^2/E^(5*x^2)) + 6/x])/((-1 + x)*x)

________________________________________________________________________________________

fricas [A]  time = 1.03, size = 39, normalized size = 1.18 4xlog(xe(e(x2log(x)5x2))+6x)x2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x^2-x)*exp(exp(x^2*log(x)-5*x^2))+12*x-6)*log((x*exp(exp(x^2*log(x)-5*x^2))+6)/x)+(((-2*x^4+2*x
^3)*log(x)+9*x^4-9*x^3)*exp(x^2*log(x)-5*x^2)-4*x^3)*exp(exp(x^2*log(x)-5*x^2))-24*x^2+6*x-6)/((x^5-2*x^4+x^3)
*exp(exp(x^2*log(x)-5*x^2))+6*x^4-12*x^3+6*x^2),x, algorithm="fricas")

[Out]

(4*x - log((x*e^(e^(x^2*log(x) - 5*x^2)) + 6)/x))/(x^2 - x)

________________________________________________________________________________________

giac [B]  time = 1.60, size = 78, normalized size = 2.36 4xlog((xe(x2log(x)5x2+e(x2log(x)5x2))+6e(x2log(x)5x2))e(x2log(x)+5x2))+log(x)x2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x^2-x)*exp(exp(x^2*log(x)-5*x^2))+12*x-6)*log((x*exp(exp(x^2*log(x)-5*x^2))+6)/x)+(((-2*x^4+2*x
^3)*log(x)+9*x^4-9*x^3)*exp(x^2*log(x)-5*x^2)-4*x^3)*exp(exp(x^2*log(x)-5*x^2))-24*x^2+6*x-6)/((x^5-2*x^4+x^3)
*exp(exp(x^2*log(x)-5*x^2))+6*x^4-12*x^3+6*x^2),x, algorithm="giac")

[Out]

(4*x - log((x*e^(x^2*log(x) - 5*x^2 + e^(x^2*log(x) - 5*x^2)) + 6*e^(x^2*log(x) - 5*x^2))*e^(-x^2*log(x) + 5*x
^2)) + log(x))/(x^2 - x)

________________________________________________________________________________________

maple [C]  time = 0.21, size = 222, normalized size = 6.73




method result size



risch ln(xexx2e5x2+6)x(x1)+iπcsgn(ix)csgn(i(xexx2e5x2+6))csgn(i(xexx2e5x2+6)x)iπcsgn(ix)csgn(i(xexx2e5x2+6)x)2iπcsgn(i(xexx2e5x2+6))csgn(i(xexx2e5x2+6)x)2+iπcsgn(i(xexx2e5x2+6)x)3+8x+2ln(x)2x(x1) 222



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((2*x^2-x)*exp(exp(x^2*ln(x)-5*x^2))+12*x-6)*ln((x*exp(exp(x^2*ln(x)-5*x^2))+6)/x)+(((-2*x^4+2*x^3)*ln(x)
+9*x^4-9*x^3)*exp(x^2*ln(x)-5*x^2)-4*x^3)*exp(exp(x^2*ln(x)-5*x^2))-24*x^2+6*x-6)/((x^5-2*x^4+x^3)*exp(exp(x^2
*ln(x)-5*x^2))+6*x^4-12*x^3+6*x^2),x,method=_RETURNVERBOSE)

[Out]

-1/x/(x-1)*ln(x*exp(x^(x^2)*exp(-5*x^2))+6)+1/2*(I*Pi*csgn(I/x)*csgn(I*(x*exp(x^(x^2)*exp(-5*x^2))+6))*csgn(I/
x*(x*exp(x^(x^2)*exp(-5*x^2))+6))-I*Pi*csgn(I/x)*csgn(I/x*(x*exp(x^(x^2)*exp(-5*x^2))+6))^2-I*Pi*csgn(I*(x*exp
(x^(x^2)*exp(-5*x^2))+6))*csgn(I/x*(x*exp(x^(x^2)*exp(-5*x^2))+6))^2+I*Pi*csgn(I/x*(x*exp(x^(x^2)*exp(-5*x^2))
+6))^3+8*x+2*ln(x))/x/(x-1)

________________________________________________________________________________________

maxima [A]  time = 0.44, size = 37, normalized size = 1.12 4xlog(xe(e(x2log(x)5x2))+6)+log(x)x2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x^2-x)*exp(exp(x^2*log(x)-5*x^2))+12*x-6)*log((x*exp(exp(x^2*log(x)-5*x^2))+6)/x)+(((-2*x^4+2*x
^3)*log(x)+9*x^4-9*x^3)*exp(x^2*log(x)-5*x^2)-4*x^3)*exp(exp(x^2*log(x)-5*x^2))-24*x^2+6*x-6)/((x^5-2*x^4+x^3)
*exp(exp(x^2*log(x)-5*x^2))+6*x^4-12*x^3+6*x^2),x, algorithm="maxima")

[Out]

(4*x - log(x*e^(e^(x^2*log(x) - 5*x^2)) + 6) + log(x))/(x^2 - x)

________________________________________________________________________________________

mupad [B]  time = 4.85, size = 37, normalized size = 1.12 4xln(xexx2e5x2+6x)x(x1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log((x*exp(exp(x^2*log(x) - 5*x^2)) + 6)/x)*(exp(exp(x^2*log(x) - 5*x^2))*(x - 2*x^2) - 12*x + 6) - exp(
exp(x^2*log(x) - 5*x^2))*(exp(x^2*log(x) - 5*x^2)*(log(x)*(2*x^3 - 2*x^4) - 9*x^3 + 9*x^4) - 4*x^3) - 6*x + 24
*x^2 + 6)/(exp(exp(x^2*log(x) - 5*x^2))*(x^3 - 2*x^4 + x^5) + 6*x^2 - 12*x^3 + 6*x^4),x)

[Out]

(4*x - log((x*exp(x^(x^2)*exp(-5*x^2)) + 6)/x))/(x*(x - 1))

________________________________________________________________________________________

sympy [A]  time = 33.23, size = 31, normalized size = 0.94 log(xeex2log(x)5x2+6x)x2x+4x1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x**2-x)*exp(exp(x**2*ln(x)-5*x**2))+12*x-6)*ln((x*exp(exp(x**2*ln(x)-5*x**2))+6)/x)+(((-2*x**4+
2*x**3)*ln(x)+9*x**4-9*x**3)*exp(x**2*ln(x)-5*x**2)-4*x**3)*exp(exp(x**2*ln(x)-5*x**2))-24*x**2+6*x-6)/((x**5-
2*x**4+x**3)*exp(exp(x**2*ln(x)-5*x**2))+6*x**4-12*x**3+6*x**2),x)

[Out]

-log((x*exp(exp(x**2*log(x) - 5*x**2)) + 6)/x)/(x**2 - x) + 4/(x - 1)

________________________________________________________________________________________