3.73.32
Optimal. Leaf size=33
________________________________________________________________________________________
Rubi [F] time = 15.07, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-6 + 6*x - 24*x^2 + E^E^(-5*x^2 + x^2*Log[x])*(-4*x^3 + E^(-5*x^2 + x^2*Log[x])*(-9*x^3 + 9*x^4 + (2*x^3
- 2*x^4)*Log[x])) + (-6 + 12*x + E^E^(-5*x^2 + x^2*Log[x])*(-x + 2*x^2))*Log[(6 + E^E^(-5*x^2 + x^2*Log[x])*x)
/x])/(6*x^2 - 12*x^3 + 6*x^4 + E^E^(-5*x^2 + x^2*Log[x])*(x^3 - 2*x^4 + x^5)),x]
[Out]
Log[E^(x^x^2/E^(5*x^2)) + 6/x]/((1 - x)*x) - 24*Defer[Int][1/((-1 + x)^2*(6 + E^(x^x^2/E^(5*x^2))*x)), x] - 4*
Defer[Int][E^(x^x^2/E^(5*x^2))/((-1 + x)^2*(6 + E^(x^x^2/E^(5*x^2))*x)), x] - 4*Defer[Int][E^(x^x^2/E^(5*x^2))
/((-1 + x)*(6 + E^(x^x^2/E^(5*x^2))*x)), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 37, normalized size = 1.12
Antiderivative was successfully verified.
[In]
Integrate[(-6 + 6*x - 24*x^2 + E^E^(-5*x^2 + x^2*Log[x])*(-4*x^3 + E^(-5*x^2 + x^2*Log[x])*(-9*x^3 + 9*x^4 + (
2*x^3 - 2*x^4)*Log[x])) + (-6 + 12*x + E^E^(-5*x^2 + x^2*Log[x])*(-x + 2*x^2))*Log[(6 + E^E^(-5*x^2 + x^2*Log[
x])*x)/x])/(6*x^2 - 12*x^3 + 6*x^4 + E^E^(-5*x^2 + x^2*Log[x])*(x^3 - 2*x^4 + x^5)),x]
[Out]
(4*x - Log[E^(x^x^2/E^(5*x^2)) + 6/x])/((-1 + x)*x)
________________________________________________________________________________________
fricas [A] time = 1.03, size = 39, normalized size = 1.18
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x^2-x)*exp(exp(x^2*log(x)-5*x^2))+12*x-6)*log((x*exp(exp(x^2*log(x)-5*x^2))+6)/x)+(((-2*x^4+2*x
^3)*log(x)+9*x^4-9*x^3)*exp(x^2*log(x)-5*x^2)-4*x^3)*exp(exp(x^2*log(x)-5*x^2))-24*x^2+6*x-6)/((x^5-2*x^4+x^3)
*exp(exp(x^2*log(x)-5*x^2))+6*x^4-12*x^3+6*x^2),x, algorithm="fricas")
[Out]
(4*x - log((x*e^(e^(x^2*log(x) - 5*x^2)) + 6)/x))/(x^2 - x)
________________________________________________________________________________________
giac [B] time = 1.60, size = 78, normalized size = 2.36
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x^2-x)*exp(exp(x^2*log(x)-5*x^2))+12*x-6)*log((x*exp(exp(x^2*log(x)-5*x^2))+6)/x)+(((-2*x^4+2*x
^3)*log(x)+9*x^4-9*x^3)*exp(x^2*log(x)-5*x^2)-4*x^3)*exp(exp(x^2*log(x)-5*x^2))-24*x^2+6*x-6)/((x^5-2*x^4+x^3)
*exp(exp(x^2*log(x)-5*x^2))+6*x^4-12*x^3+6*x^2),x, algorithm="giac")
[Out]
(4*x - log((x*e^(x^2*log(x) - 5*x^2 + e^(x^2*log(x) - 5*x^2)) + 6*e^(x^2*log(x) - 5*x^2))*e^(-x^2*log(x) + 5*x
^2)) + log(x))/(x^2 - x)
________________________________________________________________________________________
maple [C] time = 0.21, size = 222, normalized size = 6.73
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((2*x^2-x)*exp(exp(x^2*ln(x)-5*x^2))+12*x-6)*ln((x*exp(exp(x^2*ln(x)-5*x^2))+6)/x)+(((-2*x^4+2*x^3)*ln(x)
+9*x^4-9*x^3)*exp(x^2*ln(x)-5*x^2)-4*x^3)*exp(exp(x^2*ln(x)-5*x^2))-24*x^2+6*x-6)/((x^5-2*x^4+x^3)*exp(exp(x^2
*ln(x)-5*x^2))+6*x^4-12*x^3+6*x^2),x,method=_RETURNVERBOSE)
[Out]
-1/x/(x-1)*ln(x*exp(x^(x^2)*exp(-5*x^2))+6)+1/2*(I*Pi*csgn(I/x)*csgn(I*(x*exp(x^(x^2)*exp(-5*x^2))+6))*csgn(I/
x*(x*exp(x^(x^2)*exp(-5*x^2))+6))-I*Pi*csgn(I/x)*csgn(I/x*(x*exp(x^(x^2)*exp(-5*x^2))+6))^2-I*Pi*csgn(I*(x*exp
(x^(x^2)*exp(-5*x^2))+6))*csgn(I/x*(x*exp(x^(x^2)*exp(-5*x^2))+6))^2+I*Pi*csgn(I/x*(x*exp(x^(x^2)*exp(-5*x^2))
+6))^3+8*x+2*ln(x))/x/(x-1)
________________________________________________________________________________________
maxima [A] time = 0.44, size = 37, normalized size = 1.12
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x^2-x)*exp(exp(x^2*log(x)-5*x^2))+12*x-6)*log((x*exp(exp(x^2*log(x)-5*x^2))+6)/x)+(((-2*x^4+2*x
^3)*log(x)+9*x^4-9*x^3)*exp(x^2*log(x)-5*x^2)-4*x^3)*exp(exp(x^2*log(x)-5*x^2))-24*x^2+6*x-6)/((x^5-2*x^4+x^3)
*exp(exp(x^2*log(x)-5*x^2))+6*x^4-12*x^3+6*x^2),x, algorithm="maxima")
[Out]
(4*x - log(x*e^(e^(x^2*log(x) - 5*x^2)) + 6) + log(x))/(x^2 - x)
________________________________________________________________________________________
mupad [B] time = 4.85, size = 37, normalized size = 1.12
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(log((x*exp(exp(x^2*log(x) - 5*x^2)) + 6)/x)*(exp(exp(x^2*log(x) - 5*x^2))*(x - 2*x^2) - 12*x + 6) - exp(
exp(x^2*log(x) - 5*x^2))*(exp(x^2*log(x) - 5*x^2)*(log(x)*(2*x^3 - 2*x^4) - 9*x^3 + 9*x^4) - 4*x^3) - 6*x + 24
*x^2 + 6)/(exp(exp(x^2*log(x) - 5*x^2))*(x^3 - 2*x^4 + x^5) + 6*x^2 - 12*x^3 + 6*x^4),x)
[Out]
(4*x - log((x*exp(x^(x^2)*exp(-5*x^2)) + 6)/x))/(x*(x - 1))
________________________________________________________________________________________
sympy [A] time = 33.23, size = 31, normalized size = 0.94
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x**2-x)*exp(exp(x**2*ln(x)-5*x**2))+12*x-6)*ln((x*exp(exp(x**2*ln(x)-5*x**2))+6)/x)+(((-2*x**4+
2*x**3)*ln(x)+9*x**4-9*x**3)*exp(x**2*ln(x)-5*x**2)-4*x**3)*exp(exp(x**2*ln(x)-5*x**2))-24*x**2+6*x-6)/((x**5-
2*x**4+x**3)*exp(exp(x**2*ln(x)-5*x**2))+6*x**4-12*x**3+6*x**2),x)
[Out]
-log((x*exp(exp(x**2*log(x) - 5*x**2)) + 6)/x)/(x**2 - x) + 4/(x - 1)
________________________________________________________________________________________