3.73.53 13(4x+12x2+4x3+(8x+36x2+16x3)log(x))dx

Optimal. Leaf size=17 43x2(1+3x+x2)log(x)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 26, normalized size of antiderivative = 1.53, number of steps used = 8, number of rules used = 4, integrand size = 35, number of rulesintegrand size = 0.114, Rules used = {12, 1594, 2356, 2304} 43x4log(x)+4x3log(x)43x2log(x)

Antiderivative was successfully verified.

[In]

Int[(-4*x + 12*x^2 + 4*x^3 + (-8*x + 36*x^2 + 16*x^3)*Log[x])/3,x]

[Out]

(-4*x^2*Log[x])/3 + 4*x^3*Log[x] + (4*x^4*Log[x])/3

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1594

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2356

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(Polyx_), x_Symbol] :> Int[ExpandIntegrand[Polyx*(a + b*Log[c*
x^n])^p, x], x] /; FreeQ[{a, b, c, n, p}, x] && PolynomialQ[Polyx, x]

Rubi steps

integral=13(4x+12x2+4x3+(8x+36x2+16x3)log(x))dx=2x23+4x33+x43+13(8x+36x2+16x3)log(x)dx=2x23+4x33+x43+13x(8+36x+16x2)log(x)dx=2x23+4x33+x43+13(8xlog(x)+36x2log(x)+16x3log(x))dx=2x23+4x33+x4383xlog(x)dx+163x3log(x)dx+12x2log(x)dx=43x2log(x)+4x3log(x)+43x4log(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 26, normalized size = 1.53 43x2log(x)+4x3log(x)+43x4log(x)

Antiderivative was successfully verified.

[In]

Integrate[(-4*x + 12*x^2 + 4*x^3 + (-8*x + 36*x^2 + 16*x^3)*Log[x])/3,x]

[Out]

(-4*x^2*Log[x])/3 + 4*x^3*Log[x] + (4*x^4*Log[x])/3

________________________________________________________________________________________

fricas [A]  time = 0.70, size = 18, normalized size = 1.06 43(x4+3x3x2)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(16*x^3+36*x^2-8*x)*log(x)+4/3*x^3+4*x^2-4/3*x,x, algorithm="fricas")

[Out]

4/3*(x^4 + 3*x^3 - x^2)*log(x)

________________________________________________________________________________________

giac [A]  time = 0.14, size = 22, normalized size = 1.29 43x4log(x)+4x3log(x)43x2log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(16*x^3+36*x^2-8*x)*log(x)+4/3*x^3+4*x^2-4/3*x,x, algorithm="giac")

[Out]

4/3*x^4*log(x) + 4*x^3*log(x) - 4/3*x^2*log(x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 16, normalized size = 0.94




method result size



risch 4x2(x2+3x1)ln(x)3 16
default 4x4ln(x)3+4x3ln(x)4x2ln(x)3 23
norman 4x4ln(x)3+4x3ln(x)4x2ln(x)3 23



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/3*(16*x^3+36*x^2-8*x)*ln(x)+4/3*x^3+4*x^2-4/3*x,x,method=_RETURNVERBOSE)

[Out]

4/3*x^2*(x^2+3*x-1)*ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 18, normalized size = 1.06 43(x4+3x3x2)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(16*x^3+36*x^2-8*x)*log(x)+4/3*x^3+4*x^2-4/3*x,x, algorithm="maxima")

[Out]

4/3*(x^4 + 3*x^3 - x^2)*log(x)

________________________________________________________________________________________

mupad [B]  time = 4.37, size = 15, normalized size = 0.88 4x2ln(x)(x2+3x1)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(4*x^2 - (4*x)/3 + (4*x^3)/3 + (log(x)*(36*x^2 - 8*x + 16*x^3))/3,x)

[Out]

(4*x^2*log(x)*(3*x + x^2 - 1))/3

________________________________________________________________________________________

sympy [A]  time = 0.16, size = 20, normalized size = 1.18 (4x43+4x34x23)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(16*x**3+36*x**2-8*x)*ln(x)+4/3*x**3+4*x**2-4/3*x,x)

[Out]

(4*x**4/3 + 4*x**3 - 4*x**2/3)*log(x)

________________________________________________________________________________________