3.73.54 (7x+14e2xx)log(10x)+(7e2x7x+(7e2xx7x2)log(10x))log(e2x+x)3e3xx+3exx2dx

Optimal. Leaf size=23 73exlog(10x)log(e2x+x)

________________________________________________________________________________________

Rubi [F]  time = 4.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} (7x+14e2xx)log(10x)+(7e2x7x+(7e2xx7x2)log(10x))log(e2x+x)3e3xx+3exx2dx

Verification is not applicable to the result.

[In]

Int[((7*x + 14*E^(2*x)*x)*Log[-10/x] + (-7*E^(2*x) - 7*x + (-7*E^(2*x)*x - 7*x^2)*Log[-10/x])*Log[E^(2*x) + x]
)/(3*E^(3*x)*x + 3*E^x*x^2),x]

[Out]

(-14*ExpIntegralEi[-x])/3 + (7*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, -x])/3 - (14*Log[-10/x])/(3*E^x) - (7
*ExpIntegralEi[-x]*Log[-10/x])/3 - (7*EulerGamma*Log[x])/3 - (7*(ExpIntegralE[1, x] + ExpIntegralEi[-x])*Log[x
])/3 - (7*Log[x]^2)/6 + (7*Log[-10/x]*Log[E^(2*x) + x])/(3*E^x) + (7*Log[-10/x]*Defer[Int][1/(E^x*(E^(2*x) + x
)), x])/3 - (14*Log[-10/x]*Defer[Int][E^x/(E^(2*x) + x), x])/3 + (7*Log[-10/x]*Defer[Int][E^x/(x*(E^(2*x) + x)
), x])/3 - (14*Log[-10/x]*Defer[Int][x/(E^x*(E^(2*x) + x)), x])/3 + (7*Defer[Int][Defer[Int][1/(E^x*(E^(2*x) +
 x)), x]/x, x])/3 - (14*Defer[Int][Defer[Int][E^x/(E^(2*x) + x), x]/x, x])/3 + (7*Defer[Int][Defer[Int][E^x/(x
*(E^(2*x) + x)), x]/x, x])/3 - (14*Defer[Int][Defer[Int][x/(E^x*(E^(2*x) + x)), x]/x, x])/3

Rubi steps

integral=ex((7x+14e2xx)log(10x)+(7e2x7x+(7e2xx7x2)log(10x))log(e2x+x))3x(e2x+x)dx=13ex((7x+14e2xx)log(10x)+(7e2x7x+(7e2xx7x2)log(10x))log(e2x+x))x(e2x+x)dx=13(7ex(1+2x)log(10x)e2x+x7ex(2xlog(10x)+log(e2x+x)+xlog(10x)log(e2x+x))x)dx=(73ex(1+2x)log(10x)e2x+xdx)73ex(2xlog(10x)+log(e2x+x)+xlog(10x)log(e2x+x))xdx=(73(2exlog(10x)+ex(1+xlog(10x))log(e2x+x)x)dx)73exe2x+xdx+2exxe2x+xdxxdx+13(7log(10x))exe2x+xdx13(14log(10x))exxe2x+xdx=(73ex(1+xlog(10x))log(e2x+x)xdx)73(exe2x+xdxx+2exxe2x+xdxx)dx+143exlog(10x)dx+13(7log(10x))exe2x+xdx13(14log(10x))exxe2x+xdx=143exlog(10x)73(exlog(e2x+x)x+exlog(10x)log(e2x+x))dx+73exe2x+xdxxdx143exxdx143exxe2x+xdxxdx+13(7log(10x))exe2x+xdx13(14log(10x))exxe2x+xdx=14Ei(x)3143exlog(10x)73exlog(e2x+x)xdx73exlog(10x)log(e2x+x)dx+73exe2x+xdxxdx143exxe2x+xdxxdx+13(7log(10x))exe2x+xdx13(14log(10x))exxe2x+xdx=14Ei(x)3143exlog(10x)73Ei(x)log(e2x+x)+73exlog(10x)log(e2x+x)+73(1+2e2x)Ei(x)e2x+xdx73ex(1+2e2x)log(10x)e2x+xdx+73exlog(e2x+x)xdx+73exe2x+xdxxdx143exxe2x+xdxxdx+13(7log(10x))exe2x+xdx13(14log(10x))exxe2x+xdx=14Ei(x)3143exlog(10x)73Ei(x)log(10x)+73exlog(10x)log(e2x+x)73(1+2e2x)Ei(x)e2x+xdx+73(2Ei(x)(1+2x)Ei(x)e2x+x)dx+73exe2x+xdxxdx73Ei(x)+2exe2x+xdxexx(e2x+x)dxxdx143exxe2x+xdxxdx+13(7log(10x))exe2x+xdx+13(7log(10x))exx(e2x+x)dx13(14log(10x))exe2x+xdx13(14log(10x))exxe2x+xdx=14Ei(x)3143exlog(10x)73Ei(x)log(10x)+73exlog(10x)log(e2x+x)73(1+2x)Ei(x)e2x+xdx73(2Ei(x)(1+2x)Ei(x)e2x+x)dx+73exe2x+xdxxdx73(Ei(x)+2exe2x+xdxxexx(e2x+x)dxx)dx+14Ei(x)dx3143exxe2x+xdxxdx+13(7log(10x))exe2x+xdx+13(7log(10x))exx(e2x+x)dx13(14log(10x))exe2x+xdx13(14log(10x))exxe2x+xdx=14ex314Ei(x)3+14xEi(x)3143exlog(10x)73Ei(x)log(10x)+73exlog(10x)log(e2x+x)+73(1+2x)Ei(x)e2x+xdx73(Ei(x)e2x+x+2xEi(x)e2x+x)dx+73exe2x+xdxxdx73Ei(x)+2exe2x+xdxxdx+73exx(e2x+x)dxxdx14Ei(x)dx3143exxe2x+xdxxdx+13(7log(10x))exe2x+xdx+13(7log(10x))exx(e2x+x)dx13(14log(10x))exe2x+xdx13(14log(10x))exxe2x+xdx=14Ei(x)3143exlog(10x)73Ei(x)log(10x)+73exlog(10x)log(e2x+x)+73Ei(x)e2x+xdx+73(Ei(x)e2x+x+2xEi(x)e2x+x)dx+73exe2x+xdxxdx73(Ei(x)x+2exe2x+xdxx)dx+73exx(e2x+x)dxxdx143xEi(x)e2x+xdx143exxe2x+xdxxdx+13(7log(10x))exe2x+xdx+13(7log(10x))exx(e2x+x)dx13(14log(10x))exe2x+xdx13(14log(10x))exxe2x+xdx=14Ei(x)3143exlog(10x)73Ei(x)log(10x)+73exlog(10x)log(e2x+x)73Ei(x)xdx+73exe2x+xdxxdx+73exx(e2x+x)dxxdx143exe2x+xdxxdx143exxe2x+xdxxdx+13(7log(10x))exe2x+xdx+13(7log(10x))exx(e2x+x)dx13(14log(10x))exe2x+xdx13(14log(10x))exxe2x+xdx=14Ei(x)3143exlog(10x)73Ei(x)log(10x)73(E1(x)+Ei(x))log(x)+73exlog(10x)log(e2x+x)+73E1(x)xdx+73exe2x+xdxxdx+73exx(e2x+x)dxxdx143exe2x+xdxxdx143exxe2x+xdxxdx+13(7log(10x))exe2x+xdx+13(7log(10x))exx(e2x+x)dx13(14log(10x))exe2x+xdx13(14log(10x))exxe2x+xdx=14Ei(x)3+73x3F3(1,1,1;2,2,2;x)143exlog(10x)73Ei(x)log(10x)73γlog(x)73(E1(x)+Ei(x))log(x)7log2(x)6+73exlog(10x)log(e2x+x)+73exe2x+xdxxdx+73exx(e2x+x)dxxdx143exe2x+xdxxdx143exxe2x+xdxxdx+13(7log(10x))exe2x+xdx+13(7log(10x))exx(e2x+x)dx13(14log(10x))exe2x+xdx13(14log(10x))exxe2x+xdx

________________________________________________________________________________________

Mathematica [A]  time = 0.54, size = 23, normalized size = 1.00 73exlog(10x)log(e2x+x)

Antiderivative was successfully verified.

[In]

Integrate[((7*x + 14*E^(2*x)*x)*Log[-10/x] + (-7*E^(2*x) - 7*x + (-7*E^(2*x)*x - 7*x^2)*Log[-10/x])*Log[E^(2*x
) + x])/(3*E^(3*x)*x + 3*E^x*x^2),x]

[Out]

(7*Log[-10/x]*Log[E^(2*x) + x])/(3*E^x)

________________________________________________________________________________________

fricas [A]  time = 0.51, size = 19, normalized size = 0.83 73e(x)log(x+e(2x))log(10x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-7*x*exp(x)^2-7*x^2)*log(-10/x)-7*exp(x)^2-7*x)*log(exp(x)^2+x)+(14*x*exp(x)^2+7*x)*log(-10/x))/(
3*x*exp(x)^3+3*exp(x)*x^2),x, algorithm="fricas")

[Out]

7/3*e^(-x)*log(x + e^(2*x))*log(-10/x)

________________________________________________________________________________________

giac [B]  time = 0.16, size = 68, normalized size = 2.96 712(π2sgn(x+e(2x))sgn(x)+π2sgn(x+e(2x))π2sgn(x)π2+4log(10)log(|x+e(2x)|)4log(|x+e(2x)|)log(|x|))e(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-7*x*exp(x)^2-7*x^2)*log(-10/x)-7*exp(x)^2-7*x)*log(exp(x)^2+x)+(14*x*exp(x)^2+7*x)*log(-10/x))/(
3*x*exp(x)^3+3*exp(x)*x^2),x, algorithm="giac")

[Out]

7/12*(pi^2*sgn(x + e^(2*x))*sgn(x) + pi^2*sgn(x + e^(2*x)) - pi^2*sgn(x) - pi^2 + 4*log(10)*log(abs(x + e^(2*x
))) - 4*log(abs(x + e^(2*x)))*log(abs(x)))*e^(-x)

________________________________________________________________________________________

maple [C]  time = 0.12, size = 57, normalized size = 2.48




method result size



risch 7(2iπcsgn(ix)2+2iπcsgn(ix)3+2iπ+2ln(2)+2ln(5)2ln(x))exln(e2x+x)6 57



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-7*x*exp(x)^2-7*x^2)*ln(-10/x)-7*exp(x)^2-7*x)*ln(exp(x)^2+x)+(14*x*exp(x)^2+7*x)*ln(-10/x))/(3*x*exp(x
)^3+3*exp(x)*x^2),x,method=_RETURNVERBOSE)

[Out]

7/6*(-2*I*Pi*csgn(I/x)^2+2*I*Pi*csgn(I/x)^3+2*I*Pi+2*ln(2)+2*ln(5)-2*ln(x))*exp(-x)*ln(exp(2*x)+x)

________________________________________________________________________________________

maxima [A]  time = 0.48, size = 24, normalized size = 1.04 73(log(5)+log(2)log(x))e(x)log(x+e(2x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-7*x*exp(x)^2-7*x^2)*log(-10/x)-7*exp(x)^2-7*x)*log(exp(x)^2+x)+(14*x*exp(x)^2+7*x)*log(-10/x))/(
3*x*exp(x)^3+3*exp(x)*x^2),x, algorithm="maxima")

[Out]

7/3*(log(5) + log(2) - log(-x))*e^(-x)*log(x + e^(2*x))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 ln(10x)(7x+14xe2x)ln(x+e2x)(7x+7e2x+ln(10x)(7xe2x+7x2))3xe3x+3x2exdx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(-10/x)*(7*x + 14*x*exp(2*x)) - log(x + exp(2*x))*(7*x + 7*exp(2*x) + log(-10/x)*(7*x*exp(2*x) + 7*x^2
)))/(3*x*exp(3*x) + 3*x^2*exp(x)),x)

[Out]

int((log(-10/x)*(7*x + 14*x*exp(2*x)) - log(x + exp(2*x))*(7*x + 7*exp(2*x) + log(-10/x)*(7*x*exp(2*x) + 7*x^2
)))/(3*x*exp(3*x) + 3*x^2*exp(x)), x)

________________________________________________________________________________________

sympy [A]  time = 0.62, size = 20, normalized size = 0.87 7exlog(10x)log(x+e2x)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-7*x*exp(x)**2-7*x**2)*ln(-10/x)-7*exp(x)**2-7*x)*ln(exp(x)**2+x)+(14*x*exp(x)**2+7*x)*ln(-10/x))
/(3*x*exp(x)**3+3*exp(x)*x**2),x)

[Out]

7*exp(-x)*log(-10/x)*log(x + exp(2*x))/3

________________________________________________________________________________________