3.73.54
Optimal. Leaf size=23
________________________________________________________________________________________
Rubi [F] time = 4.01, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[((7*x + 14*E^(2*x)*x)*Log[-10/x] + (-7*E^(2*x) - 7*x + (-7*E^(2*x)*x - 7*x^2)*Log[-10/x])*Log[E^(2*x) + x]
)/(3*E^(3*x)*x + 3*E^x*x^2),x]
[Out]
(-14*ExpIntegralEi[-x])/3 + (7*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, -x])/3 - (14*Log[-10/x])/(3*E^x) - (7
*ExpIntegralEi[-x]*Log[-10/x])/3 - (7*EulerGamma*Log[x])/3 - (7*(ExpIntegralE[1, x] + ExpIntegralEi[-x])*Log[x
])/3 - (7*Log[x]^2)/6 + (7*Log[-10/x]*Log[E^(2*x) + x])/(3*E^x) + (7*Log[-10/x]*Defer[Int][1/(E^x*(E^(2*x) + x
)), x])/3 - (14*Log[-10/x]*Defer[Int][E^x/(E^(2*x) + x), x])/3 + (7*Log[-10/x]*Defer[Int][E^x/(x*(E^(2*x) + x)
), x])/3 - (14*Log[-10/x]*Defer[Int][x/(E^x*(E^(2*x) + x)), x])/3 + (7*Defer[Int][Defer[Int][1/(E^x*(E^(2*x) +
x)), x]/x, x])/3 - (14*Defer[Int][Defer[Int][E^x/(E^(2*x) + x), x]/x, x])/3 + (7*Defer[Int][Defer[Int][E^x/(x
*(E^(2*x) + x)), x]/x, x])/3 - (14*Defer[Int][Defer[Int][x/(E^x*(E^(2*x) + x)), x]/x, x])/3
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.54, size = 23, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[((7*x + 14*E^(2*x)*x)*Log[-10/x] + (-7*E^(2*x) - 7*x + (-7*E^(2*x)*x - 7*x^2)*Log[-10/x])*Log[E^(2*x
) + x])/(3*E^(3*x)*x + 3*E^x*x^2),x]
[Out]
(7*Log[-10/x]*Log[E^(2*x) + x])/(3*E^x)
________________________________________________________________________________________
fricas [A] time = 0.51, size = 19, normalized size = 0.83
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-7*x*exp(x)^2-7*x^2)*log(-10/x)-7*exp(x)^2-7*x)*log(exp(x)^2+x)+(14*x*exp(x)^2+7*x)*log(-10/x))/(
3*x*exp(x)^3+3*exp(x)*x^2),x, algorithm="fricas")
[Out]
7/3*e^(-x)*log(x + e^(2*x))*log(-10/x)
________________________________________________________________________________________
giac [B] time = 0.16, size = 68, normalized size = 2.96
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-7*x*exp(x)^2-7*x^2)*log(-10/x)-7*exp(x)^2-7*x)*log(exp(x)^2+x)+(14*x*exp(x)^2+7*x)*log(-10/x))/(
3*x*exp(x)^3+3*exp(x)*x^2),x, algorithm="giac")
[Out]
7/12*(pi^2*sgn(x + e^(2*x))*sgn(x) + pi^2*sgn(x + e^(2*x)) - pi^2*sgn(x) - pi^2 + 4*log(10)*log(abs(x + e^(2*x
))) - 4*log(abs(x + e^(2*x)))*log(abs(x)))*e^(-x)
________________________________________________________________________________________
maple [C] time = 0.12, size = 57, normalized size = 2.48
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-7*x*exp(x)^2-7*x^2)*ln(-10/x)-7*exp(x)^2-7*x)*ln(exp(x)^2+x)+(14*x*exp(x)^2+7*x)*ln(-10/x))/(3*x*exp(x
)^3+3*exp(x)*x^2),x,method=_RETURNVERBOSE)
[Out]
7/6*(-2*I*Pi*csgn(I/x)^2+2*I*Pi*csgn(I/x)^3+2*I*Pi+2*ln(2)+2*ln(5)-2*ln(x))*exp(-x)*ln(exp(2*x)+x)
________________________________________________________________________________________
maxima [A] time = 0.48, size = 24, normalized size = 1.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-7*x*exp(x)^2-7*x^2)*log(-10/x)-7*exp(x)^2-7*x)*log(exp(x)^2+x)+(14*x*exp(x)^2+7*x)*log(-10/x))/(
3*x*exp(x)^3+3*exp(x)*x^2),x, algorithm="maxima")
[Out]
7/3*(log(5) + log(2) - log(-x))*e^(-x)*log(x + e^(2*x))
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((log(-10/x)*(7*x + 14*x*exp(2*x)) - log(x + exp(2*x))*(7*x + 7*exp(2*x) + log(-10/x)*(7*x*exp(2*x) + 7*x^2
)))/(3*x*exp(3*x) + 3*x^2*exp(x)),x)
[Out]
int((log(-10/x)*(7*x + 14*x*exp(2*x)) - log(x + exp(2*x))*(7*x + 7*exp(2*x) + log(-10/x)*(7*x*exp(2*x) + 7*x^2
)))/(3*x*exp(3*x) + 3*x^2*exp(x)), x)
________________________________________________________________________________________
sympy [A] time = 0.62, size = 20, normalized size = 0.87
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-7*x*exp(x)**2-7*x**2)*ln(-10/x)-7*exp(x)**2-7*x)*ln(exp(x)**2+x)+(14*x*exp(x)**2+7*x)*ln(-10/x))
/(3*x*exp(x)**3+3*exp(x)*x**2),x)
[Out]
7*exp(-x)*log(-10/x)*log(x + exp(2*x))/3
________________________________________________________________________________________