Optimal. Leaf size=30 \[ -2-2^{\frac {1}{-2+x}} \left (e^{e^{e^{3+e^{6+x}}}}\right )^{\frac {1}{-2+x}} \]
________________________________________________________________________________________
Rubi [F] time = 1.87, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2^{\frac {1}{-2+x}} \left (e^{e^{e^{3+e^{6+x}}}}\right )^{\frac {1}{-2+x}} \left (e^{9+e^{3+e^{6+x}}+e^{6+x}+x} (2-x)+\log \left (2 e^{e^{e^{3+e^{6+x}}}}\right )\right )}{4-4 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2^{\frac {1}{-2+x}} \left (e^{e^{e^{3+e^{6+x}}}}\right )^{\frac {1}{-2+x}} \left (e^{9+e^{3+e^{6+x}}+e^{6+x}+x} (2-x)+\log \left (2 e^{e^{e^{3+e^{6+x}}}}\right )\right )}{(-2+x)^2} \, dx\\ &=\int \left (-\frac {2^{\frac {1}{-2+x}} e^{9+e^{3+e^{6+x}}+e^{6+x}+x} \left (e^{e^{e^{3+e^{6+x}}}}\right )^{\frac {1}{-2+x}}}{-2+x}+\frac {2^{\frac {1}{-2+x}} \left (e^{e^{e^{3+e^{6+x}}}}\right )^{\frac {1}{-2+x}} \log \left (2 e^{e^{e^{3+e^{6+x}}}}\right )}{(-2+x)^2}\right ) \, dx\\ &=-\int \frac {2^{\frac {1}{-2+x}} e^{9+e^{3+e^{6+x}}+e^{6+x}+x} \left (e^{e^{e^{3+e^{6+x}}}}\right )^{\frac {1}{-2+x}}}{-2+x} \, dx+\int \frac {2^{\frac {1}{-2+x}} \left (e^{e^{e^{3+e^{6+x}}}}\right )^{\frac {1}{-2+x}} \log \left (2 e^{e^{e^{3+e^{6+x}}}}\right )}{(-2+x)^2} \, dx\\ &=\log \left (2 e^{e^{e^{3+e^{6+x}}}}\right ) \int \frac {2^{\frac {1}{-2+x}} \left (e^{e^{e^{3+e^{6+x}}}}\right )^{\frac {1}{-2+x}}}{(-2+x)^2} \, dx-\int \frac {2^{\frac {1}{-2+x}} e^{9+e^{3+e^{6+x}}+e^{6+x}+x} \left (e^{e^{e^{3+e^{6+x}}}}\right )^{\frac {1}{-2+x}}}{-2+x} \, dx-\int e^{9+e^{3+e^{6+x}}+e^{6+x}+x} \int \frac {2^{\frac {1}{-2+x}} \left (e^{e^{e^{3+e^{6+x}}}}\right )^{\frac {1}{-2+x}}}{(-2+x)^2} \, dx \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 8.45, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2^{\frac {1}{-2+x}} \left (e^{e^{e^{3+e^{6+x}}}}\right )^{\frac {1}{-2+x}} \left (e^{9+e^{3+e^{6+x}}+e^{6+x}+x} (2-x)+\log \left (2 e^{e^{e^{3+e^{6+x}}}}\right )\right )}{4-4 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.85, size = 48, normalized size = 1.60 \begin {gather*} -e^{\left (\frac {{\left (e^{\left (x + e^{\left (x + 6\right )} + 9\right )} \log \relax (2) + e^{\left (x + e^{\left (x + 6\right )} + e^{\left (e^{\left (x + 6\right )} + 3\right )} + 9\right )}\right )} e^{\left (-x - e^{\left (x + 6\right )} - 9\right )}}{x - 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left ({\left (x - 2\right )} e^{\left (x + e^{\left (x + 6\right )} + e^{\left (e^{\left (x + 6\right )} + 3\right )} + 9\right )} - \log \left (2 \, e^{\left (e^{\left (e^{\left (e^{\left (x + 6\right )} + 3\right )}\right )}\right )}\right )\right )} \left (2 \, e^{\left (e^{\left (e^{\left (e^{\left (x + 6\right )} + 3\right )}\right )}\right )}\right )^{\left (\frac {1}{x - 2}\right )}}{x^{2} - 4 \, x + 4}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.40, size = 25, normalized size = 0.83
method | result | size |
risch | \(-2^{\frac {1}{x -2}} \left ({\mathrm e}^{{\mathrm e}^{{\mathrm e}^{3+{\mathrm e}^{x +6}}}}\right )^{\frac {1}{x -2}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 26, normalized size = 0.87 \begin {gather*} -e^{\left (\frac {e^{\left (e^{\left (e^{\left (x + 6\right )} + 3\right )}\right )}}{x - 2} + \frac {\log \relax (2)}{x - 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.80, size = 26, normalized size = 0.87 \begin {gather*} -2^{\frac {1}{x-2}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^6\,{\mathrm {e}}^x}\,{\mathrm {e}}^3}}{x-2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________