3.73.59 e2(2x2x32xlog(x2)log2(x2))x2(4x22x4+e4(4xx22x3)+(4x+4x2+e4(4+4x))log(x2)+(4e4+4x)log2(x2))x4dx

Optimal. Leaf size=31 e62x2(x+log(x2))2x2(e4+x)x

________________________________________________________________________________________

Rubi [F]  time = 11.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} exp(2(2x2x32xlog(x2)log2(x2))x2)(4x22x4+e4(4xx22x3)+(4x+4x2+e4(4+4x))log(x2)+(4e4+4x)log2(x2))x4dx

Verification is not applicable to the result.

[In]

Int[(E^((2*(2*x^2 - x^3 - 2*x*Log[x/2] - Log[x/2]^2))/x^2)*(-4*x^2 - 2*x^4 + E^4*(-4*x - x^2 - 2*x^3) + (-4*x
+ 4*x^2 + E^4*(-4 + 4*x))*Log[x/2] + (4*E^4 + 4*x)*Log[x/2]^2))/x^4,x]

[Out]

-2*Defer[Int][E^((2*(2*x^2 - x^3 - 2*x*Log[x/2] - Log[x/2]^2))/x^2), x] - 4*Defer[Int][1/(E^((2*(-4*x^2 + x^3
+ 2*x*Log[x/2] + Log[x/2]^2))/x^2)*x^3), x] - (4 + E^4)*Defer[Int][E^((2*(2*x^2 - x^3 - 2*x*Log[x/2] - Log[x/2
]^2))/x^2)/x^2, x] - 2*Defer[Int][1/(E^((2*(-4*x^2 + x^3 + 2*x*Log[x/2] + Log[x/2]^2))/x^2)*x), x] - 4*Defer[I
nt][Log[x/2]/(E^((2*(-4*x^2 + x^3 + 2*x*Log[x/2] + Log[x/2]^2))/x^2)*x^4), x] - 4*(1 - E^4)*Defer[Int][(E^((2*
(2*x^2 - x^3 - 2*x*Log[x/2] - Log[x/2]^2))/x^2)*Log[x/2])/x^3, x] + 4*Defer[Int][(E^((2*(2*x^2 - x^3 - 2*x*Log
[x/2] - Log[x/2]^2))/x^2)*Log[x/2])/x^2, x] + 4*Defer[Int][Log[x/2]^2/(E^((2*(-4*x^2 + x^3 + 2*x*Log[x/2] + Lo
g[x/2]^2))/x^2)*x^4), x] + 4*Defer[Int][(E^((2*(2*x^2 - x^3 - 2*x*Log[x/2] - Log[x/2]^2))/x^2)*Log[x/2]^2)/x^3
, x]

Rubi steps

integral=(exp(2(2x2x32xlog(x2)log2(x2))x2)(4e4(4+e4)x2e4x22x3)x3+4exp(2(2x2x32xlog(x2)log2(x2))x2)(1+x)(e4+x)log(x2)x4+4exp(2(2x2x32xlog(x2)log2(x2))x2)(e4+x)log2(x2)x4)dx=4exp(2(2x2x32xlog(x2)log2(x2))x2)(1+x)(e4+x)log(x2)x4dx+4exp(2(2x2x32xlog(x2)log2(x2))x2)(e4+x)log2(x2)x4dx+exp(2(2x2x32xlog(x2)log2(x2))x2)(4e4(4+e4)x2e4x22x3)x3dx=4(exp(4+2(2x2x32xlog(x2)log2(x2))x2)log(x2)x4+exp(2(2x2x32xlog(x2)log2(x2))x2)(1+e4)log(x2)x3+exp(2(2x2x32xlog(x2)log2(x2))x2)log(x2)x2)dx+4(exp(4+2(2x2x32xlog(x2)log2(x2))x2)log2(x2)x4+exp(2(2x2x32xlog(x2)log2(x2))x2)log2(x2)x3)dx+(2exp(2(2x2x32xlog(x2)log2(x2))x2)4exp(4+2(2x2x32xlog(x2)log2(x2))x2)x3+exp(2(2x2x32xlog(x2)log2(x2))x2)(4e4)x22exp(4+2(2x2x32xlog(x2)log2(x2))x2)x)dx=(2exp(2(2x2x32xlog(x2)log2(x2))x2)dx)2exp(4+2(2x2x32xlog(x2)log2(x2))x2)xdx4exp(4+2(2x2x32xlog(x2)log2(x2))x2)x3dx4exp(4+2(2x2x32xlog(x2)log2(x2))x2)log(x2)x4dx+4exp(2(2x2x32xlog(x2)log2(x2))x2)log(x2)x2dx+4exp(4+2(2x2x32xlog(x2)log2(x2))x2)log2(x2)x4dx+4exp(2(2x2x32xlog(x2)log2(x2))x2)log2(x2)x3dx+(4e4)exp(2(2x2x32xlog(x2)log2(x2))x2)x2dx(4(1e4))exp(2(2x2x32xlog(x2)log2(x2))x2)log(x2)x3dx=(2exp(2(2x2x32xlog(x2)log2(x2))x2)dx)2exp(2(4x2+x3+2xlog(x2)+log2(x2))x2)xdx4exp(2(4x2+x3+2xlog(x2)+log2(x2))x2)x3dx4exp(2(4x2+x3+2xlog(x2)+log2(x2))x2)log(x2)x4dx+4exp(2(2x2x32xlog(x2)log2(x2))x2)log(x2)x2dx+4exp(2(4x2+x3+2xlog(x2)+log2(x2))x2)log2(x2)x4dx+4exp(2(2x2x32xlog(x2)log2(x2))x2)log2(x2)x3dx+(4e4)exp(2(2x2x32xlog(x2)log2(x2))x2)x2dx(4(1e4))exp(2(2x2x32xlog(x2)log2(x2))x2)log(x2)x3dx

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 41, normalized size = 1.32 161xe42x2log2(x2)x2x4+xx(e4+x)

Antiderivative was successfully verified.

[In]

Integrate[(E^((2*(2*x^2 - x^3 - 2*x*Log[x/2] - Log[x/2]^2))/x^2)*(-4*x^2 - 2*x^4 + E^4*(-4*x - x^2 - 2*x^3) +
(-4*x + 4*x^2 + E^4*(-4 + 4*x))*Log[x/2] + (4*E^4 + 4*x)*Log[x/2]^2))/x^4,x]

[Out]

(16^x^(-1)*E^(4 - 2*x - (2*Log[x/2]^2)/x^2)*(E^4 + x))/x^((4 + x)/x)

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 36, normalized size = 1.16 (x+e4)e(2(x32x2+2xlog(12x)+log(12x)2)x2)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*exp(4)+4*x)*log(1/2*x)^2+((4*x-4)*exp(4)+4*x^2-4*x)*log(1/2*x)+(-2*x^3-x^2-4*x)*exp(4)-2*x^4-4*x
^2)*exp((-log(1/2*x)^2-2*x*log(1/2*x)-x^3+2*x^2)/x^2)^2/x^4,x, algorithm="fricas")

[Out]

(x + e^4)*e^(-2*(x^3 - 2*x^2 + 2*x*log(1/2*x) + log(1/2*x)^2)/x^2)/x

________________________________________________________________________________________

giac [B]  time = 0.58, size = 63, normalized size = 2.03 xe(2(x32x2+2xlog(12x)+log(12x)2)x2)+e(2(x34x2+2xlog(12x)+log(12x)2)x2)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*exp(4)+4*x)*log(1/2*x)^2+((4*x-4)*exp(4)+4*x^2-4*x)*log(1/2*x)+(-2*x^3-x^2-4*x)*exp(4)-2*x^4-4*x
^2)*exp((-log(1/2*x)^2-2*x*log(1/2*x)-x^3+2*x^2)/x^2)^2/x^4,x, algorithm="giac")

[Out]

(x*e^(-2*(x^3 - 2*x^2 + 2*x*log(1/2*x) + log(1/2*x)^2)/x^2) + e^(-2*(x^3 - 4*x^2 + 2*x*log(1/2*x) + log(1/2*x)
^2)/x^2))/x

________________________________________________________________________________________

maple [A]  time = 0.05, size = 37, normalized size = 1.19




method result size



risch (x+e4)e2(x3+ln(x2)2+2xln(x2)2x2)x2x 37



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((4*exp(4)+4*x)*ln(1/2*x)^2+((4*x-4)*exp(4)+4*x^2-4*x)*ln(1/2*x)+(-2*x^3-x^2-4*x)*exp(4)-2*x^4-4*x^2)*exp(
(-ln(1/2*x)^2-2*x*ln(1/2*x)-x^3+2*x^2)/x^2)^2/x^4,x,method=_RETURNVERBOSE)

[Out]

(x+exp(4))/x*exp(-2*(x^3+ln(1/2*x)^2+2*x*ln(1/2*x)-2*x^2)/x^2)

________________________________________________________________________________________

maxima [B]  time = 0.56, size = 57, normalized size = 1.84 (xe4+e8)e(2x+4log(2)x2log(2)2x24log(x)x+4log(2)log(x)x22log(x)2x2)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*exp(4)+4*x)*log(1/2*x)^2+((4*x-4)*exp(4)+4*x^2-4*x)*log(1/2*x)+(-2*x^3-x^2-4*x)*exp(4)-2*x^4-4*x
^2)*exp((-log(1/2*x)^2-2*x*log(1/2*x)-x^3+2*x^2)/x^2)^2/x^4,x, algorithm="maxima")

[Out]

(x*e^4 + e^8)*e^(-2*x + 4*log(2)/x - 2*log(2)^2/x^2 - 4*log(x)/x + 4*log(2)*log(x)/x^2 - 2*log(x)^2/x^2)/x

________________________________________________________________________________________

mupad [B]  time = 4.64, size = 57, normalized size = 1.84 24/xx4ln(2)x2e42ln(2)2x22ln(x)2x22x(x+e4)x4/xx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(-(2*(2*x*log(x/2) + log(x/2)^2 - 2*x^2 + x^3))/x^2)*(exp(4)*(4*x + x^2 + 2*x^3) - log(x/2)*(4*x^2 -
4*x + exp(4)*(4*x - 4)) + 4*x^2 + 2*x^4 - log(x/2)^2*(4*x + 4*exp(4))))/x^4,x)

[Out]

(2^(4/x)*x^((4*log(2))/x^2)*exp(4 - (2*log(2)^2)/x^2 - (2*log(x)^2)/x^2 - 2*x)*(x + exp(4)))/(x^(4/x)*x)

________________________________________________________________________________________

sympy [A]  time = 0.49, size = 37, normalized size = 1.19 (x+e4)e2(x3+2x22xlog(x2)log(x2)2)x2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*exp(4)+4*x)*ln(1/2*x)**2+((4*x-4)*exp(4)+4*x**2-4*x)*ln(1/2*x)+(-2*x**3-x**2-4*x)*exp(4)-2*x**4-
4*x**2)*exp((-ln(1/2*x)**2-2*x*ln(1/2*x)-x**3+2*x**2)/x**2)**2/x**4,x)

[Out]

(x + exp(4))*exp(2*(-x**3 + 2*x**2 - 2*x*log(x/2) - log(x/2)**2)/x**2)/x

________________________________________________________________________________________