3.73.59
Optimal. Leaf size=31
________________________________________________________________________________________
Rubi [F] time = 11.30, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^((2*(2*x^2 - x^3 - 2*x*Log[x/2] - Log[x/2]^2))/x^2)*(-4*x^2 - 2*x^4 + E^4*(-4*x - x^2 - 2*x^3) + (-4*x
+ 4*x^2 + E^4*(-4 + 4*x))*Log[x/2] + (4*E^4 + 4*x)*Log[x/2]^2))/x^4,x]
[Out]
-2*Defer[Int][E^((2*(2*x^2 - x^3 - 2*x*Log[x/2] - Log[x/2]^2))/x^2), x] - 4*Defer[Int][1/(E^((2*(-4*x^2 + x^3
+ 2*x*Log[x/2] + Log[x/2]^2))/x^2)*x^3), x] - (4 + E^4)*Defer[Int][E^((2*(2*x^2 - x^3 - 2*x*Log[x/2] - Log[x/2
]^2))/x^2)/x^2, x] - 2*Defer[Int][1/(E^((2*(-4*x^2 + x^3 + 2*x*Log[x/2] + Log[x/2]^2))/x^2)*x), x] - 4*Defer[I
nt][Log[x/2]/(E^((2*(-4*x^2 + x^3 + 2*x*Log[x/2] + Log[x/2]^2))/x^2)*x^4), x] - 4*(1 - E^4)*Defer[Int][(E^((2*
(2*x^2 - x^3 - 2*x*Log[x/2] - Log[x/2]^2))/x^2)*Log[x/2])/x^3, x] + 4*Defer[Int][(E^((2*(2*x^2 - x^3 - 2*x*Log
[x/2] - Log[x/2]^2))/x^2)*Log[x/2])/x^2, x] + 4*Defer[Int][Log[x/2]^2/(E^((2*(-4*x^2 + x^3 + 2*x*Log[x/2] + Lo
g[x/2]^2))/x^2)*x^4), x] + 4*Defer[Int][(E^((2*(2*x^2 - x^3 - 2*x*Log[x/2] - Log[x/2]^2))/x^2)*Log[x/2]^2)/x^3
, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 41, normalized size = 1.32
Antiderivative was successfully verified.
[In]
Integrate[(E^((2*(2*x^2 - x^3 - 2*x*Log[x/2] - Log[x/2]^2))/x^2)*(-4*x^2 - 2*x^4 + E^4*(-4*x - x^2 - 2*x^3) +
(-4*x + 4*x^2 + E^4*(-4 + 4*x))*Log[x/2] + (4*E^4 + 4*x)*Log[x/2]^2))/x^4,x]
[Out]
(16^x^(-1)*E^(4 - 2*x - (2*Log[x/2]^2)/x^2)*(E^4 + x))/x^((4 + x)/x)
________________________________________________________________________________________
fricas [A] time = 0.66, size = 36, normalized size = 1.16
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*exp(4)+4*x)*log(1/2*x)^2+((4*x-4)*exp(4)+4*x^2-4*x)*log(1/2*x)+(-2*x^3-x^2-4*x)*exp(4)-2*x^4-4*x
^2)*exp((-log(1/2*x)^2-2*x*log(1/2*x)-x^3+2*x^2)/x^2)^2/x^4,x, algorithm="fricas")
[Out]
(x + e^4)*e^(-2*(x^3 - 2*x^2 + 2*x*log(1/2*x) + log(1/2*x)^2)/x^2)/x
________________________________________________________________________________________
giac [B] time = 0.58, size = 63, normalized size = 2.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*exp(4)+4*x)*log(1/2*x)^2+((4*x-4)*exp(4)+4*x^2-4*x)*log(1/2*x)+(-2*x^3-x^2-4*x)*exp(4)-2*x^4-4*x
^2)*exp((-log(1/2*x)^2-2*x*log(1/2*x)-x^3+2*x^2)/x^2)^2/x^4,x, algorithm="giac")
[Out]
(x*e^(-2*(x^3 - 2*x^2 + 2*x*log(1/2*x) + log(1/2*x)^2)/x^2) + e^(-2*(x^3 - 4*x^2 + 2*x*log(1/2*x) + log(1/2*x)
^2)/x^2))/x
________________________________________________________________________________________
maple [A] time = 0.05, size = 37, normalized size = 1.19
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((4*exp(4)+4*x)*ln(1/2*x)^2+((4*x-4)*exp(4)+4*x^2-4*x)*ln(1/2*x)+(-2*x^3-x^2-4*x)*exp(4)-2*x^4-4*x^2)*exp(
(-ln(1/2*x)^2-2*x*ln(1/2*x)-x^3+2*x^2)/x^2)^2/x^4,x,method=_RETURNVERBOSE)
[Out]
(x+exp(4))/x*exp(-2*(x^3+ln(1/2*x)^2+2*x*ln(1/2*x)-2*x^2)/x^2)
________________________________________________________________________________________
maxima [B] time = 0.56, size = 57, normalized size = 1.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*exp(4)+4*x)*log(1/2*x)^2+((4*x-4)*exp(4)+4*x^2-4*x)*log(1/2*x)+(-2*x^3-x^2-4*x)*exp(4)-2*x^4-4*x
^2)*exp((-log(1/2*x)^2-2*x*log(1/2*x)-x^3+2*x^2)/x^2)^2/x^4,x, algorithm="maxima")
[Out]
(x*e^4 + e^8)*e^(-2*x + 4*log(2)/x - 2*log(2)^2/x^2 - 4*log(x)/x + 4*log(2)*log(x)/x^2 - 2*log(x)^2/x^2)/x
________________________________________________________________________________________
mupad [B] time = 4.64, size = 57, normalized size = 1.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(-(2*(2*x*log(x/2) + log(x/2)^2 - 2*x^2 + x^3))/x^2)*(exp(4)*(4*x + x^2 + 2*x^3) - log(x/2)*(4*x^2 -
4*x + exp(4)*(4*x - 4)) + 4*x^2 + 2*x^4 - log(x/2)^2*(4*x + 4*exp(4))))/x^4,x)
[Out]
(2^(4/x)*x^((4*log(2))/x^2)*exp(4 - (2*log(2)^2)/x^2 - (2*log(x)^2)/x^2 - 2*x)*(x + exp(4)))/(x^(4/x)*x)
________________________________________________________________________________________
sympy [A] time = 0.49, size = 37, normalized size = 1.19
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*exp(4)+4*x)*ln(1/2*x)**2+((4*x-4)*exp(4)+4*x**2-4*x)*ln(1/2*x)+(-2*x**3-x**2-4*x)*exp(4)-2*x**4-
4*x**2)*exp((-ln(1/2*x)**2-2*x*ln(1/2*x)-x**3+2*x**2)/x**2)**2/x**4,x)
[Out]
(x + exp(4))*exp(2*(-x**3 + 2*x**2 - 2*x*log(x/2) - log(x/2)**2)/x**2)/x
________________________________________________________________________________________