3.73.60 e4+2e3x10x22x320x45x5+e2+e3(102x20x26x3)+(102x2e2+e3x20x26x3)log(2x)xlog2(2x)xdx

Optimal. Leaf size=23 (5x)(e2+e3+x2+log(2x))2

________________________________________________________________________________________

Rubi [B]  time = 0.25, antiderivative size = 160, normalized size of antiderivative = 6.96, number of steps used = 12, number of rules used = 6, integrand size = 99, number of rulesintegrand size = 0.061, Rules used = {14, 2357, 2295, 2301, 2304, 2296} x55x423(1+3e2+e3)x3+2x332x3log(2x)5(1+2e2+e3)x2+5x210x2log(2x)e2+e3(2+e2+e3)x+2(1+e2+e3)x2xxlog2(2x)5log2(2x)2(1+e2+e3)xlog(2x)+2xlog(2x)10e2+e3log(x)

Antiderivative was successfully verified.

[In]

Int[(-(E^(4 + 2*E^3)*x) - 10*x^2 - 2*x^3 - 20*x^4 - 5*x^5 + E^(2 + E^3)*(-10 - 2*x - 20*x^2 - 6*x^3) + (-10 -
2*x - 2*E^(2 + E^3)*x - 20*x^2 - 6*x^3)*Log[2*x] - x*Log[2*x]^2)/x,x]

[Out]

-2*x + 2*(1 + E^(2 + E^3))*x - E^(2 + E^3)*(2 + E^(2 + E^3))*x + 5*x^2 - 5*(1 + 2*E^(2 + E^3))*x^2 + (2*x^3)/3
 - (2*(1 + 3*E^(2 + E^3))*x^3)/3 - 5*x^4 - x^5 - 10*E^(2 + E^3)*Log[x] + 2*x*Log[2*x] - 2*(1 + E^(2 + E^3))*x*
Log[2*x] - 10*x^2*Log[2*x] - 2*x^3*Log[2*x] - 5*Log[2*x]^2 - x*Log[2*x]^2

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2296

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]

Rule 2301

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/(x_), x_Symbol] :> Simp[(a + b*Log[c*x^n])^2/(2*b*n), x] /; FreeQ[{a
, b, c, n}, x]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2357

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[c*x^
n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, n}, x] && RationalFunctionQ[RFx, x] && IGtQ[p, 0]

Rubi steps

integral=(10e2+e32e2+e3(1+e2+e32)x10(1+2e2+e3)x22(1+3e2+e3)x320x45x5x+2(5(1+e2+e3)x10x23x3)log(2x)xlog2(2x))dx=2(5(1+e2+e3)x10x23x3)log(2x)xdx+10e2+e32e2+e3(1+e2+e32)x10(1+2e2+e3)x22(1+3e2+e3)x320x45x5xdxlog2(2x)dx=xlog2(2x)+2log(2x)dx+2((1e2+e3)log(2x)5log(2x)x10xlog(2x)3x2log(2x))dx+(e2+e3(2+e2+e3)10e2+e3x10(1+2e2+e3)x2(1+3e2+e3)x220x35x4)dx=2xe2+e3(2+e2+e3)x5(1+2e2+e3)x223(1+3e2+e3)x35x4x510e2+e3log(x)+2xlog(2x)xlog2(2x)6x2log(2x)dx10log(2x)xdx20xlog(2x)dx(2(1+e2+e3))log(2x)dx=2x+2(1+e2+e3)xe2+e3(2+e2+e3)x+5x25(1+2e2+e3)x2+2x3323(1+3e2+e3)x35x4x510e2+e3log(x)+2xlog(2x)2(1+e2+e3)xlog(2x)10x2log(2x)2x3log(2x)5log2(2x)xlog2(2x)

________________________________________________________________________________________

Mathematica [B]  time = 0.13, size = 76, normalized size = 3.30 x(e4+2e3+2e2+e3x(5+x)+x3(5+x))10e2+e3log(x)2x(e2+e3+x(5+x))log(2x)(5+x)log2(2x)

Antiderivative was successfully verified.

[In]

Integrate[(-(E^(4 + 2*E^3)*x) - 10*x^2 - 2*x^3 - 20*x^4 - 5*x^5 + E^(2 + E^3)*(-10 - 2*x - 20*x^2 - 6*x^3) + (
-10 - 2*x - 2*E^(2 + E^3)*x - 20*x^2 - 6*x^3)*Log[2*x] - x*Log[2*x]^2)/x,x]

[Out]

-(x*(E^(4 + 2*E^3) + 2*E^(2 + E^3)*x*(5 + x) + x^3*(5 + x))) - 10*E^(2 + E^3)*Log[x] - 2*x*(E^(2 + E^3) + x*(5
 + x))*Log[2*x] - (5 + x)*Log[2*x]^2

________________________________________________________________________________________

fricas [B]  time = 0.81, size = 72, normalized size = 3.13 x55x4(x+5)log(2x)2xe(2e3+4)2(x3+5x2)e(e3+2)2(x3+5x2+(x+5)e(e3+2))log(2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x*log(2*x)^2+(-2*x*exp(2+exp(3))-6*x^3-20*x^2-2*x-10)*log(2*x)-x*exp(2+exp(3))^2+(-6*x^3-20*x^2-2*
x-10)*exp(2+exp(3))-5*x^5-20*x^4-2*x^3-10*x^2)/x,x, algorithm="fricas")

[Out]

-x^5 - 5*x^4 - (x + 5)*log(2*x)^2 - x*e^(2*e^3 + 4) - 2*(x^3 + 5*x^2)*e^(e^3 + 2) - 2*(x^3 + 5*x^2 + (x + 5)*e
^(e^3 + 2))*log(2*x)

________________________________________________________________________________________

giac [B]  time = 0.27, size = 97, normalized size = 4.22 x55x42x3e(e3+2)2x3log(2x)10x2e(e3+2)10x2log(2x)2xe(e3+2)log(2x)xlog(2x)2xe(2e3+4)5log(2x)210e(e3+2)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x*log(2*x)^2+(-2*x*exp(2+exp(3))-6*x^3-20*x^2-2*x-10)*log(2*x)-x*exp(2+exp(3))^2+(-6*x^3-20*x^2-2*
x-10)*exp(2+exp(3))-5*x^5-20*x^4-2*x^3-10*x^2)/x,x, algorithm="giac")

[Out]

-x^5 - 5*x^4 - 2*x^3*e^(e^3 + 2) - 2*x^3*log(2*x) - 10*x^2*e^(e^3 + 2) - 10*x^2*log(2*x) - 2*x*e^(e^3 + 2)*log
(2*x) - x*log(2*x)^2 - x*e^(2*e^3 + 4) - 5*log(2*x)^2 - 10*e^(e^3 + 2)*log(x)

________________________________________________________________________________________

maple [B]  time = 0.06, size = 87, normalized size = 3.78




method result size



risch (x5)ln(2x)2+(2xe2+e32x310x2)ln(2x)xe4+2e32e2+e3x310e2+e3x2x55x410ln(x)e2+e3 87
norman 10ln(2x)e2ee35x4x55ln(2x)2xln(2x)210x2ln(2x)2x3ln(2x)xe4e2e310e2ee3x22e2ee3x32xe2ee3ln(2x) 102
derivativedivides x52x3ln(2x)2e2ee3x35x4xln(2x)2e2ee3(2xln(2x)2x)10x2ln(2x)xe4e2e310e2ee3x22xe2ee35ln(2x)210ln(2x)e2ee3 116
default x52x3ln(2x)2e2ee3x35x4xln(2x)2e2ee3(2xln(2x)2x)10x2ln(2x)xe4e2e310e2ee3x22xe2ee35ln(2x)210ln(2x)e2ee3 116



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x*ln(2*x)^2+(-2*x*exp(2+exp(3))-6*x^3-20*x^2-2*x-10)*ln(2*x)-x*exp(2+exp(3))^2+(-6*x^3-20*x^2-2*x-10)*ex
p(2+exp(3))-5*x^5-20*x^4-2*x^3-10*x^2)/x,x,method=_RETURNVERBOSE)

[Out]

(-x-5)*ln(2*x)^2+(-2*x*exp(2+exp(3))-2*x^3-10*x^2)*ln(2*x)-x*exp(4+2*exp(3))-2*exp(2+exp(3))*x^3-10*exp(2+exp(
3))*x^2-x^5-5*x^4-10*ln(x)*exp(2+exp(3))

________________________________________________________________________________________

maxima [B]  time = 0.36, size = 128, normalized size = 5.57 x55x42x3e(e3+2)2x3log(2x)10x2e(e3+2)10x2log(2x)(log(2x)22log(2x)+2)xxe(2e3+4)2(xlog(2x)x)e(e3+2)2xe(e3+2)2xlog(2x)5log(2x)210e(e3+2)log(x)+2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x*log(2*x)^2+(-2*x*exp(2+exp(3))-6*x^3-20*x^2-2*x-10)*log(2*x)-x*exp(2+exp(3))^2+(-6*x^3-20*x^2-2*
x-10)*exp(2+exp(3))-5*x^5-20*x^4-2*x^3-10*x^2)/x,x, algorithm="maxima")

[Out]

-x^5 - 5*x^4 - 2*x^3*e^(e^3 + 2) - 2*x^3*log(2*x) - 10*x^2*e^(e^3 + 2) - 10*x^2*log(2*x) - (log(2*x)^2 - 2*log
(2*x) + 2)*x - x*e^(2*e^3 + 4) - 2*(x*log(2*x) - x)*e^(e^3 + 2) - 2*x*e^(e^3 + 2) - 2*x*log(2*x) - 5*log(2*x)^
2 - 10*e^(e^3 + 2)*log(x) + 2*x

________________________________________________________________________________________

mupad [B]  time = 4.43, size = 94, normalized size = 4.09 x(ln(2x)2+2ee3+2ln(2x)+e2e3+4)10ee3+2ln(x)5ln(2x)2x3(2ee3+2+2ln(2x))x2(10ee3+2+10ln(2x))5x4x5

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(exp(3) + 2)*(2*x + 20*x^2 + 6*x^3 + 10) + log(2*x)*(2*x + 2*x*exp(exp(3) + 2) + 20*x^2 + 6*x^3 + 10)
 + x*exp(2*exp(3) + 4) + x*log(2*x)^2 + 10*x^2 + 2*x^3 + 20*x^4 + 5*x^5)/x,x)

[Out]

- x*(exp(2*exp(3) + 4) + log(2*x)^2 + 2*log(2*x)*exp(exp(3) + 2)) - 10*exp(exp(3) + 2)*log(x) - 5*log(2*x)^2 -
 x^3*(2*exp(exp(3) + 2) + 2*log(2*x)) - x^2*(10*exp(exp(3) + 2) + 10*log(2*x)) - 5*x^4 - x^5

________________________________________________________________________________________

sympy [B]  time = 0.31, size = 100, normalized size = 4.35 x55x42x3e2ee310x2e2ee3xe4e2e3+(x5)log(2x)2+(2x310x22xe2ee3)log(2x)10e2ee3log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x*ln(2*x)**2+(-2*x*exp(2+exp(3))-6*x**3-20*x**2-2*x-10)*ln(2*x)-x*exp(2+exp(3))**2+(-6*x**3-20*x**
2-2*x-10)*exp(2+exp(3))-5*x**5-20*x**4-2*x**3-10*x**2)/x,x)

[Out]

-x**5 - 5*x**4 - 2*x**3*exp(2)*exp(exp(3)) - 10*x**2*exp(2)*exp(exp(3)) - x*exp(4)*exp(2*exp(3)) + (-x - 5)*lo
g(2*x)**2 + (-2*x**3 - 10*x**2 - 2*x*exp(2)*exp(exp(3)))*log(2*x) - 10*exp(2)*exp(exp(3))*log(x)

________________________________________________________________________________________