3.73.60
Optimal. Leaf size=23
________________________________________________________________________________________
Rubi [B] time = 0.25, antiderivative size = 160, normalized size of antiderivative = 6.96,
number of steps used = 12, number of rules used = 6, integrand size = 99, = 0.061, Rules used
= {14, 2357, 2295, 2301, 2304, 2296}
Antiderivative was successfully verified.
[In]
Int[(-(E^(4 + 2*E^3)*x) - 10*x^2 - 2*x^3 - 20*x^4 - 5*x^5 + E^(2 + E^3)*(-10 - 2*x - 20*x^2 - 6*x^3) + (-10 -
2*x - 2*E^(2 + E^3)*x - 20*x^2 - 6*x^3)*Log[2*x] - x*Log[2*x]^2)/x,x]
[Out]
-2*x + 2*(1 + E^(2 + E^3))*x - E^(2 + E^3)*(2 + E^(2 + E^3))*x + 5*x^2 - 5*(1 + 2*E^(2 + E^3))*x^2 + (2*x^3)/3
- (2*(1 + 3*E^(2 + E^3))*x^3)/3 - 5*x^4 - x^5 - 10*E^(2 + E^3)*Log[x] + 2*x*Log[2*x] - 2*(1 + E^(2 + E^3))*x*
Log[2*x] - 10*x^2*Log[2*x] - 2*x^3*Log[2*x] - 5*Log[2*x]^2 - x*Log[2*x]^2
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 2295
Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]
Rule 2296
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]
Rule 2301
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/(x_), x_Symbol] :> Simp[(a + b*Log[c*x^n])^2/(2*b*n), x] /; FreeQ[{a
, b, c, n}, x]
Rule 2304
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]
Rule 2357
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[c*x^
n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, n}, x] && RationalFunctionQ[RFx, x] && IGtQ[p, 0]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.13, size = 76, normalized size = 3.30
Antiderivative was successfully verified.
[In]
Integrate[(-(E^(4 + 2*E^3)*x) - 10*x^2 - 2*x^3 - 20*x^4 - 5*x^5 + E^(2 + E^3)*(-10 - 2*x - 20*x^2 - 6*x^3) + (
-10 - 2*x - 2*E^(2 + E^3)*x - 20*x^2 - 6*x^3)*Log[2*x] - x*Log[2*x]^2)/x,x]
[Out]
-(x*(E^(4 + 2*E^3) + 2*E^(2 + E^3)*x*(5 + x) + x^3*(5 + x))) - 10*E^(2 + E^3)*Log[x] - 2*x*(E^(2 + E^3) + x*(5
+ x))*Log[2*x] - (5 + x)*Log[2*x]^2
________________________________________________________________________________________
fricas [B] time = 0.81, size = 72, normalized size = 3.13
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-x*log(2*x)^2+(-2*x*exp(2+exp(3))-6*x^3-20*x^2-2*x-10)*log(2*x)-x*exp(2+exp(3))^2+(-6*x^3-20*x^2-2*
x-10)*exp(2+exp(3))-5*x^5-20*x^4-2*x^3-10*x^2)/x,x, algorithm="fricas")
[Out]
-x^5 - 5*x^4 - (x + 5)*log(2*x)^2 - x*e^(2*e^3 + 4) - 2*(x^3 + 5*x^2)*e^(e^3 + 2) - 2*(x^3 + 5*x^2 + (x + 5)*e
^(e^3 + 2))*log(2*x)
________________________________________________________________________________________
giac [B] time = 0.27, size = 97, normalized size = 4.22
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-x*log(2*x)^2+(-2*x*exp(2+exp(3))-6*x^3-20*x^2-2*x-10)*log(2*x)-x*exp(2+exp(3))^2+(-6*x^3-20*x^2-2*
x-10)*exp(2+exp(3))-5*x^5-20*x^4-2*x^3-10*x^2)/x,x, algorithm="giac")
[Out]
-x^5 - 5*x^4 - 2*x^3*e^(e^3 + 2) - 2*x^3*log(2*x) - 10*x^2*e^(e^3 + 2) - 10*x^2*log(2*x) - 2*x*e^(e^3 + 2)*log
(2*x) - x*log(2*x)^2 - x*e^(2*e^3 + 4) - 5*log(2*x)^2 - 10*e^(e^3 + 2)*log(x)
________________________________________________________________________________________
maple [B] time = 0.06, size = 87, normalized size = 3.78
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
derivativedivides |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((-x*ln(2*x)^2+(-2*x*exp(2+exp(3))-6*x^3-20*x^2-2*x-10)*ln(2*x)-x*exp(2+exp(3))^2+(-6*x^3-20*x^2-2*x-10)*ex
p(2+exp(3))-5*x^5-20*x^4-2*x^3-10*x^2)/x,x,method=_RETURNVERBOSE)
[Out]
(-x-5)*ln(2*x)^2+(-2*x*exp(2+exp(3))-2*x^3-10*x^2)*ln(2*x)-x*exp(4+2*exp(3))-2*exp(2+exp(3))*x^3-10*exp(2+exp(
3))*x^2-x^5-5*x^4-10*ln(x)*exp(2+exp(3))
________________________________________________________________________________________
maxima [B] time = 0.36, size = 128, normalized size = 5.57
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-x*log(2*x)^2+(-2*x*exp(2+exp(3))-6*x^3-20*x^2-2*x-10)*log(2*x)-x*exp(2+exp(3))^2+(-6*x^3-20*x^2-2*
x-10)*exp(2+exp(3))-5*x^5-20*x^4-2*x^3-10*x^2)/x,x, algorithm="maxima")
[Out]
-x^5 - 5*x^4 - 2*x^3*e^(e^3 + 2) - 2*x^3*log(2*x) - 10*x^2*e^(e^3 + 2) - 10*x^2*log(2*x) - (log(2*x)^2 - 2*log
(2*x) + 2)*x - x*e^(2*e^3 + 4) - 2*(x*log(2*x) - x)*e^(e^3 + 2) - 2*x*e^(e^3 + 2) - 2*x*log(2*x) - 5*log(2*x)^
2 - 10*e^(e^3 + 2)*log(x) + 2*x
________________________________________________________________________________________
mupad [B] time = 4.43, size = 94, normalized size = 4.09
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(exp(3) + 2)*(2*x + 20*x^2 + 6*x^3 + 10) + log(2*x)*(2*x + 2*x*exp(exp(3) + 2) + 20*x^2 + 6*x^3 + 10)
+ x*exp(2*exp(3) + 4) + x*log(2*x)^2 + 10*x^2 + 2*x^3 + 20*x^4 + 5*x^5)/x,x)
[Out]
- x*(exp(2*exp(3) + 4) + log(2*x)^2 + 2*log(2*x)*exp(exp(3) + 2)) - 10*exp(exp(3) + 2)*log(x) - 5*log(2*x)^2 -
x^3*(2*exp(exp(3) + 2) + 2*log(2*x)) - x^2*(10*exp(exp(3) + 2) + 10*log(2*x)) - 5*x^4 - x^5
________________________________________________________________________________________
sympy [B] time = 0.31, size = 100, normalized size = 4.35
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-x*ln(2*x)**2+(-2*x*exp(2+exp(3))-6*x**3-20*x**2-2*x-10)*ln(2*x)-x*exp(2+exp(3))**2+(-6*x**3-20*x**
2-2*x-10)*exp(2+exp(3))-5*x**5-20*x**4-2*x**3-10*x**2)/x,x)
[Out]
-x**5 - 5*x**4 - 2*x**3*exp(2)*exp(exp(3)) - 10*x**2*exp(2)*exp(exp(3)) - x*exp(4)*exp(2*exp(3)) + (-x - 5)*lo
g(2*x)**2 + (-2*x**3 - 10*x**2 - 2*x*exp(2)*exp(exp(3)))*log(2*x) - 10*exp(2)*exp(exp(3))*log(x)
________________________________________________________________________________________