3.73.65
Optimal. Leaf size=20
________________________________________________________________________________________
Rubi [F] time = 1.76, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(9*x + 12*x^2 + 18*x^3 - 6*x^4 - 6*x^2*Log[x] + (24*x^2 - 12*x^4 - 12*x^2*Log[x] + (-36*x + 18*x^3 + 18*x*
Log[x])*Log[-2 + x^2 + Log[x]])*Log[-2*x + 3*Log[-2 + x^2 + Log[x]]])/(4*x - 2*x^3 - 2*x*Log[x] + (-6 + 3*x^2
+ 3*Log[x])*Log[-2 + x^2 + Log[x]]),x]
[Out]
-9*Defer[Int][x/((-2 + x^2 + Log[x])*(2*x - 3*Log[-2 + x^2 + Log[x]])), x] - 12*Defer[Int][x^2/((-2 + x^2 + Lo
g[x])*(2*x - 3*Log[-2 + x^2 + Log[x]])), x] - 18*Defer[Int][x^3/((-2 + x^2 + Log[x])*(2*x - 3*Log[-2 + x^2 + L
og[x]])), x] + 6*Defer[Int][x^4/((-2 + x^2 + Log[x])*(2*x - 3*Log[-2 + x^2 + Log[x]])), x] + 6*Defer[Int][(x^2
*Log[x])/((-2 + x^2 + Log[x])*(2*x - 3*Log[-2 + x^2 + Log[x]])), x] + 6*Defer[Int][x*Log[-2*x + 3*Log[-2 + x^2
+ Log[x]]], x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 20, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(9*x + 12*x^2 + 18*x^3 - 6*x^4 - 6*x^2*Log[x] + (24*x^2 - 12*x^4 - 12*x^2*Log[x] + (-36*x + 18*x^3 +
18*x*Log[x])*Log[-2 + x^2 + Log[x]])*Log[-2*x + 3*Log[-2 + x^2 + Log[x]]])/(4*x - 2*x^3 - 2*x*Log[x] + (-6 +
3*x^2 + 3*Log[x])*Log[-2 + x^2 + Log[x]]),x]
[Out]
3*x^2*Log[-2*x + 3*Log[-2 + x^2 + Log[x]]]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 20, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((18*x*log(x)+18*x^3-36*x)*log(log(x)+x^2-2)-12*x^2*log(x)-12*x^4+24*x^2)*log(3*log(log(x)+x^2-2)-2
*x)-6*x^2*log(x)-6*x^4+18*x^3+12*x^2+9*x)/((3*log(x)+3*x^2-6)*log(log(x)+x^2-2)-2*x*log(x)-2*x^3+4*x),x, algor
ithm="fricas")
[Out]
3*x^2*log(-2*x + 3*log(x^2 + log(x) - 2))
________________________________________________________________________________________
giac [A] time = 0.28, size = 20, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((18*x*log(x)+18*x^3-36*x)*log(log(x)+x^2-2)-12*x^2*log(x)-12*x^4+24*x^2)*log(3*log(log(x)+x^2-2)-2
*x)-6*x^2*log(x)-6*x^4+18*x^3+12*x^2+9*x)/((3*log(x)+3*x^2-6)*log(log(x)+x^2-2)-2*x*log(x)-2*x^3+4*x),x, algor
ithm="giac")
[Out]
3*x^2*log(-2*x + 3*log(x^2 + log(x) - 2))
________________________________________________________________________________________
maple [A] time = 0.05, size = 21, normalized size = 1.05
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((18*x*ln(x)+18*x^3-36*x)*ln(ln(x)+x^2-2)-12*x^2*ln(x)-12*x^4+24*x^2)*ln(3*ln(ln(x)+x^2-2)-2*x)-6*x^2*ln(
x)-6*x^4+18*x^3+12*x^2+9*x)/((3*ln(x)+3*x^2-6)*ln(ln(x)+x^2-2)-2*x*ln(x)-2*x^3+4*x),x,method=_RETURNVERBOSE)
[Out]
3*x^2*ln(3*ln(ln(x)+x^2-2)-2*x)
________________________________________________________________________________________
maxima [A] time = 0.39, size = 20, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((18*x*log(x)+18*x^3-36*x)*log(log(x)+x^2-2)-12*x^2*log(x)-12*x^4+24*x^2)*log(3*log(log(x)+x^2-2)-2
*x)-6*x^2*log(x)-6*x^4+18*x^3+12*x^2+9*x)/((3*log(x)+3*x^2-6)*log(log(x)+x^2-2)-2*x*log(x)-2*x^3+4*x),x, algor
ithm="maxima")
[Out]
3*x^2*log(-2*x + 3*log(x^2 + log(x) - 2))
________________________________________________________________________________________
mupad [B] time = 4.77, size = 20, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((9*x - 6*x^2*log(x) + 12*x^2 + 18*x^3 - 6*x^4 + log(3*log(log(x) + x^2 - 2) - 2*x)*(log(log(x) + x^2 - 2)*
(18*x*log(x) - 36*x + 18*x^3) - 12*x^2*log(x) + 24*x^2 - 12*x^4))/(4*x - 2*x*log(x) + log(log(x) + x^2 - 2)*(3
*log(x) + 3*x^2 - 6) - 2*x^3),x)
[Out]
3*x^2*log(3*log(log(x) + x^2 - 2) - 2*x)
________________________________________________________________________________________
sympy [A] time = 17.11, size = 20, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((18*x*ln(x)+18*x**3-36*x)*ln(ln(x)+x**2-2)-12*x**2*ln(x)-12*x**4+24*x**2)*ln(3*ln(ln(x)+x**2-2)-2*
x)-6*x**2*ln(x)-6*x**4+18*x**3+12*x**2+9*x)/((3*ln(x)+3*x**2-6)*ln(ln(x)+x**2-2)-2*x*ln(x)-2*x**3+4*x),x)
[Out]
3*x**2*log(-2*x + 3*log(x**2 + log(x) - 2))
________________________________________________________________________________________