3.73.66 2log(x)+(2+(2+x)log(x))log(x+9e8x)xlog(x)log(x+9e8x)dx

Optimal. Leaf size=25 xlog(36log2(x+9e8x)x2log2(x))

________________________________________________________________________________________

Rubi [A]  time = 0.41, antiderivative size = 24, normalized size of antiderivative = 0.96, number of steps used = 11, number of rules used = 5, integrand size = 42, number of rulesintegrand size = 0.119, Rules used = {2444, 6742, 43, 2302, 29} x+2log(x)+2log(log(x))2log(log((1+9e8)x))

Antiderivative was successfully verified.

[In]

Int[(-2*Log[x] + (2 + (2 + x)*Log[x])*Log[x + 9*E^8*x])/(x*Log[x]*Log[x + 9*E^8*x]),x]

[Out]

x + 2*Log[x] + 2*Log[Log[x]] - 2*Log[Log[(1 + 9*E^8)*x]]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2302

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2444

Int[((a_.) + Log[(c_.)*(v_)^(n_.)]*(b_.))^(p_.)*(u_.), x_Symbol] :> Int[u*(a + b*Log[c*ExpandToSum[v, x]^n])^p
, x] /; FreeQ[{a, b, c, n, p}, x] && LinearQ[v, x] &&  !LinearMatchQ[v, x] &&  !(EqQ[n, 1] && MatchQ[c*v, (e_.
)*((f_) + (g_.)*x) /; FreeQ[{e, f, g}, x]])

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=2log(x)+(2+(2+x)log(x))log(x+9e8x)xlog(x)log((1+9e8)x)dx=(2+2log(x)+xlog(x)xlog(x)2xlog((1+9e8)x))dx=(21xlog((1+9e8)x)dx)+2+2log(x)+xlog(x)xlog(x)dx=(2Subst(1xdx,x,log((1+9e8)x)))+(2+xx+2xlog(x))dx=2log(log((1+9e8)x))+21xlog(x)dx+2+xxdx=2log(log((1+9e8)x))+2Subst(1xdx,x,log(x))+(1+2x)dx=x+2log(x)+2log(log(x))2log(log((1+9e8)x))

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 23, normalized size = 0.92 x+2log(x)+2log(log(x))2log(log(x+9e8x))

Antiderivative was successfully verified.

[In]

Integrate[(-2*Log[x] + (2 + (2 + x)*Log[x])*Log[x + 9*E^8*x])/(x*Log[x]*Log[x + 9*E^8*x]),x]

[Out]

x + 2*Log[x] + 2*Log[Log[x]] - 2*Log[Log[x + 9*E^8*x]]

________________________________________________________________________________________

fricas [A]  time = 0.77, size = 24, normalized size = 0.96 x+2log(x)2log(log(x)+log(9e8+1))+2log(log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2+x)*log(x)+2)*log(9*x*exp(4)^2+x)-2*log(x))/x/log(x)/log(9*x*exp(4)^2+x),x, algorithm="fricas")

[Out]

x + 2*log(x) - 2*log(log(x) + log(9*e^8 + 1)) + 2*log(log(x))

________________________________________________________________________________________

giac [A]  time = 0.22, size = 28, normalized size = 1.12 x+2log(x)2log(log(x)log(9e8+1))+2log(log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2+x)*log(x)+2)*log(9*x*exp(4)^2+x)-2*log(x))/x/log(x)/log(9*x*exp(4)^2+x),x, algorithm="giac")

[Out]

x + 2*log(x) - 2*log(-log(x) - log(9*e^8 + 1)) + 2*log(log(x))

________________________________________________________________________________________

maple [A]  time = 0.06, size = 7, normalized size = 0.28




method result size



risch 2ln(x)+x 7
default 2ln(x)+x+2ln(ln(x))2ln(ln((9e8+1)x)) 26
norman x+2ln(9xe8+x)+2ln(ln(x))2ln(ln(9xe8+x)) 33



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((2+x)*ln(x)+2)*ln(9*x*exp(4)^2+x)-2*ln(x))/x/ln(x)/ln(9*x*exp(4)^2+x),x,method=_RETURNVERBOSE)

[Out]

2*ln(x)+x

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 22, normalized size = 0.88 x+2log(x)2log(log(9xe8+x))+2log(log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2+x)*log(x)+2)*log(9*x*exp(4)^2+x)-2*log(x))/x/log(x)/log(9*x*exp(4)^2+x),x, algorithm="maxima")

[Out]

x + 2*log(x) - 2*log(log(9*x*e^8 + x)) + 2*log(log(x))

________________________________________________________________________________________

mupad [B]  time = 4.60, size = 23, normalized size = 0.92 x+2ln(ln(x))2ln(ln(x(9e8+1)))+2ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(2*log(x) - log(x + 9*x*exp(8))*(log(x)*(x + 2) + 2))/(x*log(x + 9*x*exp(8))*log(x)),x)

[Out]

x + 2*log(log(x)) - 2*log(log(x*(9*exp(8) + 1))) + 2*log(x)

________________________________________________________________________________________

sympy [A]  time = 0.35, size = 27, normalized size = 1.08 x+2log(x)2log(log(x)+log(1+9e8))+2log(log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2+x)*ln(x)+2)*ln(9*x*exp(4)**2+x)-2*ln(x))/x/ln(x)/ln(9*x*exp(4)**2+x),x)

[Out]

x + 2*log(x) - 2*log(log(x) + log(1 + 9*exp(8))) + 2*log(log(x))

________________________________________________________________________________________