3.73.68 14e2x(15532x19x22x32x4+e5(510x+3x2+2x3))dx

Optimal. Leaf size=31 e2x(4x14(3+e5x)x)(5x2)

________________________________________________________________________________________

Rubi [B]  time = 0.29, antiderivative size = 80, normalized size of antiderivative = 2.58, number of steps used = 30, number of rules used = 4, integrand size = 48, number of rulesintegrand size = 0.083, Rules used = {12, 2196, 2194, 2176} 14e2xx4+14e2xx3+14e2x+5x3114e2xx254e2xx54e2x+5x+20e2x

Antiderivative was successfully verified.

[In]

Int[(E^(2*x)*(155 - 32*x - 19*x^2 - 2*x^3 - 2*x^4 + E^5*(-5 - 10*x + 3*x^2 + 2*x^3)))/4,x]

[Out]

20*E^(2*x) - (5*E^(2*x)*x)/4 - (5*E^(5 + 2*x)*x)/4 - (11*E^(2*x)*x^2)/4 + (E^(2*x)*x^3)/4 + (E^(5 + 2*x)*x^3)/
4 - (E^(2*x)*x^4)/4

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2196

Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] &&  !$UseGamma === True

Rubi steps

integral=14e2x(15532x19x22x32x4+e5(510x+3x2+2x3))dx=14(155e2x32e2xx19e2xx22e2xx32e2xx4+e5+2x(510x+3x2+2x3))dx=14e5+2x(510x+3x2+2x3)dx12e2xx3dx12e2xx4dx194e2xx2dx8e2xxdx+1554e2xdx=155e2x84e2xx198e2xx214e2xx314e2xx4+14(5e5+2x10e5+2xx+3e5+2xx2+2e5+2xx3)dx+34e2xx2dx+4e2xdx+194e2xxdx+e2xx3dx=171e2x8138e2xx2e2xx2+14e2xx314e2xx4+12e5+2xx3dx34e2xxdx+34e5+2xx2dx54e5+2xdx32e2xx2dx198e2xdx52e5+2xxdx=323e2x1658e5+2x2e2xx54e5+2xx114e2xx2+38e5+2xx2+14e2xx3+14e5+2xx314e2xx4+38e2xdx34e5+2xxdx34e5+2xx2dx+54e5+2xdx+32e2xxdx=163e2x854e2xx138e5+2xx114e2xx2+14e2xx3+14e5+2xx314e2xx4+38e5+2xdx34e2xdx+34e5+2xxdx=20e2x+316e5+2x54e2xx54e5+2xx114e2xx2+14e2xx3+14e5+2xx314e2xx438e5+2xdx=20e2x54e2xx54e5+2xx114e2xx2+14e2xx3+14e5+2xx314e2xx4

________________________________________________________________________________________

Mathematica [A]  time = 0.13, size = 38, normalized size = 1.23 14e2x(805(1+e5)x11x2+(1+e5)x3x4)

Antiderivative was successfully verified.

[In]

Integrate[(E^(2*x)*(155 - 32*x - 19*x^2 - 2*x^3 - 2*x^4 + E^5*(-5 - 10*x + 3*x^2 + 2*x^3)))/4,x]

[Out]

(E^(2*x)*(80 - 5*(1 + E^5)*x - 11*x^2 + (1 + E^5)*x^3 - x^4))/4

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 35, normalized size = 1.13 14(x4x3+11x2(x35x)e5+5x80)e(2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((2*x^3+3*x^2-10*x-5)*exp(5)-2*x^4-2*x^3-19*x^2-32*x+155)*exp(x)^2,x, algorithm="fricas")

[Out]

-1/4*(x^4 - x^3 + 11*x^2 - (x^3 - 5*x)*e^5 + 5*x - 80)*e^(2*x)

________________________________________________________________________________________

giac [A]  time = 0.23, size = 40, normalized size = 1.29 14(x4x3+11x2+5x80)e(2x)+14(x35x)e(2x+5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((2*x^3+3*x^2-10*x-5)*exp(5)-2*x^4-2*x^3-19*x^2-32*x+155)*exp(x)^2,x, algorithm="giac")

[Out]

-1/4*(x^4 - x^3 + 11*x^2 + 5*x - 80)*e^(2*x) + 1/4*(x^3 - 5*x)*e^(2*x + 5)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 36, normalized size = 1.16




method result size



gosper e2x(x3e5x4+x35xe511x25x+80)4 36
risch e2x(x3e5x4+x35xe511x25x+80)4 36
norman (545e54)xe2x+(e54+14)x3e2x+20e2x11e2xx24e2xx44 52
meijerg 19+155e2x8+(2e52)(6(32x3+48x248x+24)e2x4)64(3e519)(2(12x212x+6)e2x3)32+(10e532)(1(4x+2)e2x2)16(80x4160x3+240x2240x+120)e2x320+5e5(1e2x)8 125
default 20e2x5xe2x45e5e2x811e2xx24+e2xx34e2xx445e5(xe2x2e2x4)2+3e5(e2xx22xe2x2+e2x4)4+e5(e2xx323e2xx24+3xe2x43e2x8)2 131



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/4*((2*x^3+3*x^2-10*x-5)*exp(5)-2*x^4-2*x^3-19*x^2-32*x+155)*exp(x)^2,x,method=_RETURNVERBOSE)

[Out]

1/4*exp(x)^2*(x^3*exp(5)-x^4+x^3-5*x*exp(5)-11*x^2-5*x+80)

________________________________________________________________________________________

maxima [B]  time = 0.35, size = 156, normalized size = 5.03 18(2x44x3+6x26x+3)e(2x)+116(4x3e56x2e5+6xe53e5)e(2x)116(4x36x2+6x3)e(2x)+316(2x2e52xe5+e5)e(2x)1916(2x22x+1)e(2x)58(2xe5e5)e(2x)2(2x1)e(2x)+1558e(2x)58e(2x+5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((2*x^3+3*x^2-10*x-5)*exp(5)-2*x^4-2*x^3-19*x^2-32*x+155)*exp(x)^2,x, algorithm="maxima")

[Out]

-1/8*(2*x^4 - 4*x^3 + 6*x^2 - 6*x + 3)*e^(2*x) + 1/16*(4*x^3*e^5 - 6*x^2*e^5 + 6*x*e^5 - 3*e^5)*e^(2*x) - 1/16
*(4*x^3 - 6*x^2 + 6*x - 3)*e^(2*x) + 3/16*(2*x^2*e^5 - 2*x*e^5 + e^5)*e^(2*x) - 19/16*(2*x^2 - 2*x + 1)*e^(2*x
) - 5/8*(2*x*e^5 - e^5)*e^(2*x) - 2*(2*x - 1)*e^(2*x) + 155/8*e^(2*x) - 5/8*e^(2*x + 5)

________________________________________________________________________________________

mupad [B]  time = 4.26, size = 23, normalized size = 0.74 e2x(x25)(x+xe5x216)4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(2*x)*(32*x + exp(5)*(10*x - 3*x^2 - 2*x^3 + 5) + 19*x^2 + 2*x^3 + 2*x^4 - 155))/4,x)

[Out]

(exp(2*x)*(x^2 - 5)*(x + x*exp(5) - x^2 - 16))/4

________________________________________________________________________________________

sympy [A]  time = 0.18, size = 36, normalized size = 1.16 (x4+x3+x3e511x25xe55x+80)e2x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((2*x**3+3*x**2-10*x-5)*exp(5)-2*x**4-2*x**3-19*x**2-32*x+155)*exp(x)**2,x)

[Out]

(-x**4 + x**3 + x**3*exp(5) - 11*x**2 - 5*x*exp(5) - 5*x + 80)*exp(2*x)/4

________________________________________________________________________________________