3.73.68
Optimal. Leaf size=31
________________________________________________________________________________________
Rubi [B] time = 0.29, antiderivative size = 80, normalized size of antiderivative = 2.58,
number of steps used = 30, number of rules used = 4, integrand size = 48, = 0.083, Rules used
= {12, 2196, 2194, 2176}
Antiderivative was successfully verified.
[In]
Int[(E^(2*x)*(155 - 32*x - 19*x^2 - 2*x^3 - 2*x^4 + E^5*(-5 - 10*x + 3*x^2 + 2*x^3)))/4,x]
[Out]
20*E^(2*x) - (5*E^(2*x)*x)/4 - (5*E^(5 + 2*x)*x)/4 - (11*E^(2*x)*x^2)/4 + (E^(2*x)*x^3)/4 + (E^(5 + 2*x)*x^3)/
4 - (E^(2*x)*x^4)/4
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 2176
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2196
Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] && !$UseGamma === True
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 38, normalized size = 1.23
Antiderivative was successfully verified.
[In]
Integrate[(E^(2*x)*(155 - 32*x - 19*x^2 - 2*x^3 - 2*x^4 + E^5*(-5 - 10*x + 3*x^2 + 2*x^3)))/4,x]
[Out]
(E^(2*x)*(80 - 5*(1 + E^5)*x - 11*x^2 + (1 + E^5)*x^3 - x^4))/4
________________________________________________________________________________________
fricas [A] time = 0.59, size = 35, normalized size = 1.13
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/4*((2*x^3+3*x^2-10*x-5)*exp(5)-2*x^4-2*x^3-19*x^2-32*x+155)*exp(x)^2,x, algorithm="fricas")
[Out]
-1/4*(x^4 - x^3 + 11*x^2 - (x^3 - 5*x)*e^5 + 5*x - 80)*e^(2*x)
________________________________________________________________________________________
giac [A] time = 0.23, size = 40, normalized size = 1.29
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/4*((2*x^3+3*x^2-10*x-5)*exp(5)-2*x^4-2*x^3-19*x^2-32*x+155)*exp(x)^2,x, algorithm="giac")
[Out]
-1/4*(x^4 - x^3 + 11*x^2 + 5*x - 80)*e^(2*x) + 1/4*(x^3 - 5*x)*e^(2*x + 5)
________________________________________________________________________________________
maple [A] time = 0.05, size = 36, normalized size = 1.16
|
|
|
method |
result |
size |
|
|
|
gosper |
|
|
risch |
|
|
norman |
|
|
meijerg |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(1/4*((2*x^3+3*x^2-10*x-5)*exp(5)-2*x^4-2*x^3-19*x^2-32*x+155)*exp(x)^2,x,method=_RETURNVERBOSE)
[Out]
1/4*exp(x)^2*(x^3*exp(5)-x^4+x^3-5*x*exp(5)-11*x^2-5*x+80)
________________________________________________________________________________________
maxima [B] time = 0.35, size = 156, normalized size = 5.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/4*((2*x^3+3*x^2-10*x-5)*exp(5)-2*x^4-2*x^3-19*x^2-32*x+155)*exp(x)^2,x, algorithm="maxima")
[Out]
-1/8*(2*x^4 - 4*x^3 + 6*x^2 - 6*x + 3)*e^(2*x) + 1/16*(4*x^3*e^5 - 6*x^2*e^5 + 6*x*e^5 - 3*e^5)*e^(2*x) - 1/16
*(4*x^3 - 6*x^2 + 6*x - 3)*e^(2*x) + 3/16*(2*x^2*e^5 - 2*x*e^5 + e^5)*e^(2*x) - 19/16*(2*x^2 - 2*x + 1)*e^(2*x
) - 5/8*(2*x*e^5 - e^5)*e^(2*x) - 2*(2*x - 1)*e^(2*x) + 155/8*e^(2*x) - 5/8*e^(2*x + 5)
________________________________________________________________________________________
mupad [B] time = 4.26, size = 23, normalized size = 0.74
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(2*x)*(32*x + exp(5)*(10*x - 3*x^2 - 2*x^3 + 5) + 19*x^2 + 2*x^3 + 2*x^4 - 155))/4,x)
[Out]
(exp(2*x)*(x^2 - 5)*(x + x*exp(5) - x^2 - 16))/4
________________________________________________________________________________________
sympy [A] time = 0.18, size = 36, normalized size = 1.16
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/4*((2*x**3+3*x**2-10*x-5)*exp(5)-2*x**4-2*x**3-19*x**2-32*x+155)*exp(x)**2,x)
[Out]
(-x**4 + x**3 + x**3*exp(5) - 11*x**2 - 5*x*exp(5) - 5*x + 80)*exp(2*x)/4
________________________________________________________________________________________