3.73.67
Optimal. Leaf size=24
________________________________________________________________________________________
Rubi [F] time = 1.81, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-60 + 108*x + (-12 + 240*x)*Log[x] + (24*x + 48*x*Log[x])*Log[5*x])/(16*x^2 + (8*x^2 - 72*x^3)*Log[x] + (
x^2 - 18*x^3 + 81*x^4)*Log[x]^2 + (-16*x^3*Log[x] + (-4*x^3 + 36*x^4)*Log[x]^2)*Log[5*x] + 4*x^4*Log[x]^2*Log[
5*x]^2),x]
[Out]
48*Defer[Int][1/(x^2*(-4 - Log[x] + 9*x*Log[x] + 2*x*Log[x]*Log[5*x])^2), x] + 48*Defer[Int][1/(x^2*Log[x]*(-4
- Log[x] + 9*x*Log[x] + 2*x*Log[x]*Log[5*x])^2), x] + 12*Defer[Int][Log[x]/(x^2*(-4 - Log[x] + 9*x*Log[x] + 2
*x*Log[x]*Log[5*x])^2), x] + 24*Defer[Int][Log[x]/(x*(-4 - Log[x] + 9*x*Log[x] + 2*x*Log[x]*Log[5*x])^2), x] +
24*Defer[Int][1/(x^2*(-4 - Log[x] + 9*x*Log[x] + 2*x*Log[x]*Log[5*x])), x] + 12*Defer[Int][1/(x^2*Log[x]*(-4
- Log[x] + 9*x*Log[x] + 2*x*Log[x]*Log[5*x])), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.89, size = 24, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(-60 + 108*x + (-12 + 240*x)*Log[x] + (24*x + 48*x*Log[x])*Log[5*x])/(16*x^2 + (8*x^2 - 72*x^3)*Log[
x] + (x^2 - 18*x^3 + 81*x^4)*Log[x]^2 + (-16*x^3*Log[x] + (-4*x^3 + 36*x^4)*Log[x]^2)*Log[5*x] + 4*x^4*Log[x]^
2*Log[5*x]^2),x]
[Out]
-12/(x*(-4 + Log[x]*(-1 + 9*x + 2*x*Log[5*x])))
________________________________________________________________________________________
fricas [A] time = 0.67, size = 36, normalized size = 1.50
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((48*x*log(x)+24*x)*log(5*x)+(240*x-12)*log(x)+108*x-60)/(4*x^4*log(x)^2*log(5*x)^2+((36*x^4-4*x^3)*
log(x)^2-16*x^3*log(x))*log(5*x)+(81*x^4-18*x^3+x^2)*log(x)^2+(-72*x^3+8*x^2)*log(x)+16*x^2),x, algorithm="fri
cas")
[Out]
-12/(2*x^2*log(x)^2 + (2*x^2*log(5) + 9*x^2 - x)*log(x) - 4*x)
________________________________________________________________________________________
giac [A] time = 0.26, size = 38, normalized size = 1.58
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((48*x*log(x)+24*x)*log(5*x)+(240*x-12)*log(x)+108*x-60)/(4*x^4*log(x)^2*log(5*x)^2+((36*x^4-4*x^3)*
log(x)^2-16*x^3*log(x))*log(5*x)+(81*x^4-18*x^3+x^2)*log(x)^2+(-72*x^3+8*x^2)*log(x)+16*x^2),x, algorithm="gia
c")
[Out]
-12/(2*x^2*log(5)*log(x) + 2*x^2*log(x)^2 + 9*x^2*log(x) - x*log(x) - 4*x)
________________________________________________________________________________________
maple [C] time = 0.21, size = 39, normalized size = 1.62
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((48*x*ln(x)+24*x)*ln(5*x)+(240*x-12)*ln(x)+108*x-60)/(4*x^4*ln(x)^2*ln(5*x)^2+((36*x^4-4*x^3)*ln(x)^2-16*
x^3*ln(x))*ln(5*x)+(81*x^4-18*x^3+x^2)*ln(x)^2+(-72*x^3+8*x^2)*ln(x)+16*x^2),x,method=_RETURNVERBOSE)
[Out]
-12*I/x/(2*I*ln(5)*x*ln(x)+2*I*x*ln(x)^2+9*I*x*ln(x)-I*ln(x)-4*I)
________________________________________________________________________________________
maxima [A] time = 0.48, size = 34, normalized size = 1.42
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((48*x*log(x)+24*x)*log(5*x)+(240*x-12)*log(x)+108*x-60)/(4*x^4*log(x)^2*log(5*x)^2+((36*x^4-4*x^3)*
log(x)^2-16*x^3*log(x))*log(5*x)+(81*x^4-18*x^3+x^2)*log(x)^2+(-72*x^3+8*x^2)*log(x)+16*x^2),x, algorithm="max
ima")
[Out]
-12/(2*x^2*log(x)^2 + (x^2*(2*log(5) + 9) - x)*log(x) - 4*x)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((108*x + log(x)*(240*x - 12) + log(5*x)*(24*x + 48*x*log(x)) - 60)/(log(x)*(8*x^2 - 72*x^3) + log(x)^2*(x^
2 - 18*x^3 + 81*x^4) - log(5*x)*(16*x^3*log(x) + log(x)^2*(4*x^3 - 36*x^4)) + 16*x^2 + 4*x^4*log(5*x)^2*log(x)
^2),x)
[Out]
int((108*x + log(x)*(240*x - 12) + log(5*x)*(24*x + 48*x*log(x)) - 60)/(log(x)*(8*x^2 - 72*x^3) + log(x)^2*(x^
2 - 18*x^3 + 81*x^4) - log(5*x)*(16*x^3*log(x) + log(x)^2*(4*x^3 - 36*x^4)) + 16*x^2 + 4*x^4*log(5*x)^2*log(x)
^2), x)
________________________________________________________________________________________
sympy [A] time = 0.44, size = 34, normalized size = 1.42
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((48*x*ln(x)+24*x)*ln(5*x)+(240*x-12)*ln(x)+108*x-60)/(4*x**4*ln(x)**2*ln(5*x)**2+((36*x**4-4*x**3)*
ln(x)**2-16*x**3*ln(x))*ln(5*x)+(81*x**4-18*x**3+x**2)*ln(x)**2+(-72*x**3+8*x**2)*ln(x)+16*x**2),x)
[Out]
-12/(2*x**2*log(x)**2 - 4*x + (2*x**2*log(5) + 9*x**2 - x)*log(x))
________________________________________________________________________________________