3.73.72 ex(16+4x)+x1x(x2x3x2log(x))4exx+2x5+x4+1xdx

Optimal. Leaf size=24 5+log(4exx3+2x+x1xx)

________________________________________________________________________________________

Rubi [F]  time = 1.91, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} ex(16+4x)+x1x(x2x3x2log(x))4exx+2x5+x4+1xdx

Verification is not applicable to the result.

[In]

Int[(E^x*(-16 + 4*x) + x^x^(-1)*(x^2 - x^3 - x^2*Log[x]))/(4*E^x*x + 2*x^5 + x^(4 + x^(-1))),x]

[Out]

-Log[x] + Log[x]/x + 4*Defer[Int][E^x/(4*E^x + 2*x^4 + x^(3 + x^(-1))), x] - 4*Defer[Int][E^x/(x^2*(4*E^x + 2*
x^4 + x^(3 + x^(-1)))), x] + 4*Log[x]*Defer[Int][E^x/(x^2*(4*E^x + 2*x^4 + x^(3 + x^(-1)))), x] - 12*Defer[Int
][E^x/(x*(4*E^x + 2*x^4 + x^(3 + x^(-1)))), x] - 2*Defer[Int][x^2/(4*E^x + 2*x^4 + x^(3 + x^(-1))), x] + 2*Log
[x]*Defer[Int][x^2/(4*E^x + 2*x^4 + x^(3 + x^(-1))), x] + 2*Defer[Int][x^3/(4*E^x + 2*x^4 + x^(3 + x^(-1))), x
] - 2*Defer[Int][Defer[Int][x^2/(4*E^x + 2*x^4 + x^(3 + x^(-1))), x]/x, x] - 4*Defer[Int][Defer[Int][E^x/(4*E^
x*x^2 + 2*x^6 + x^(5 + x^(-1))), x]/x, x]

Rubi steps

integral=4ex(4+x)x2+1x(1+x+log(x))4exx+2x5+x4+1xdx=(1xlog(x)x2+2(2ex6exx+2exx2x4+x5+2exlog(x)+x4log(x))x2(4ex+2x4+x3+1x))dx=22ex6exx+2exx2x4+x5+2exlog(x)+x4log(x)x2(4ex+2x4+x3+1x)dx+1xlog(x)x2dx=2(2ex4ex+2x4+x3+1x2exx2(4ex+2x4+x3+1x)6exx(4ex+2x4+x3+1x)x24ex+2x4+x3+1x+x34ex+2x4+x3+1x+2exlog(x)x2(4ex+2x4+x3+1x)+x2log(x)4ex+2x4+x3+1x)dx+(1xx2log(x)x2)dx=(2x24ex+2x4+x3+1xdx)+2x34ex+2x4+x3+1xdx+2x2log(x)4ex+2x4+x3+1xdx+4ex4ex+2x4+x3+1xdx4exx2(4ex+2x4+x3+1x)dx+4exlog(x)x2(4ex+2x4+x3+1x)dx12exx(4ex+2x4+x3+1x)dx+1xx2dxlog(x)x2dx=1x+log(x)x2x24ex+2x4+x3+1xdx+2x34ex+2x4+x3+1xdx2x24ex+2x4+x3+1xdxxdx+4ex4ex+2x4+x3+1xdx4exx2(4ex+2x4+x3+1x)dx4ex4exx2+2x6+x5+1xdxxdx12exx(4ex+2x4+x3+1x)dx+(2log(x))x24ex+2x4+x3+1xdx+(4log(x))exx2(4ex+2x4+x3+1x)dx+(1x21x)dx=log(x)+log(x)x2x24ex+2x4+x3+1xdx+2x34ex+2x4+x3+1xdx2x24ex+2x4+x3+1xdxxdx+4ex4ex+2x4+x3+1xdx4exx2(4ex+2x4+x3+1x)dx4ex4exx2+2x6+x5+1xdxxdx12exx(4ex+2x4+x3+1x)dx+(2log(x))x24ex+2x4+x3+1xdx+(4log(x))exx2(4ex+2x4+x3+1x)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.42, size = 24, normalized size = 1.00 4log(x)+log(4ex+2x4+x3+1x)

Antiderivative was successfully verified.

[In]

Integrate[(E^x*(-16 + 4*x) + x^x^(-1)*(x^2 - x^3 - x^2*Log[x]))/(4*E^x*x + 2*x^5 + x^(4 + x^(-1))),x]

[Out]

-4*Log[x] + Log[4*E^x + 2*x^4 + x^(3 + x^(-1))]

________________________________________________________________________________________

fricas [A]  time = 0.77, size = 29, normalized size = 1.21 log(x)+log(x3x(1x)+2x4+4exx3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x^2*log(x)-x^3+x^2)*exp(log(x)/x)+(4*x-16)*exp(x))/(x^4*exp(log(x)/x)+4*exp(x)*x+2*x^5),x, algori
thm="fricas")

[Out]

-log(x) + log((x^3*x^(1/x) + 2*x^4 + 4*e^x)/x^3)

________________________________________________________________________________________

giac [B]  time = 0.29, size = 47, normalized size = 1.96 xlog(x3x(1x)+2x4+4ex)3xlog(x)log(x)x+log(x)xlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x^2*log(x)-x^3+x^2)*exp(log(x)/x)+(4*x-16)*exp(x))/(x^4*exp(log(x)/x)+4*exp(x)*x+2*x^5),x, algori
thm="giac")

[Out]

(x*log(x^3*x^(1/x) + 2*x^4 + 4*e^x) - 3*x*log(x) - log(x))/x + log(x)/x - log(x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 26, normalized size = 1.08




method result size



risch ln(x)+ln(x1x+2x4+4exx3) 26



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-x^2*ln(x)-x^3+x^2)*exp(ln(x)/x)+(4*x-16)*exp(x))/(x^4*exp(ln(x)/x)+4*exp(x)*x+2*x^5),x,method=_RETURNVE
RBOSE)

[Out]

-ln(x)+ln(x^(1/x)+2*(x^4+2*exp(x))/x^3)

________________________________________________________________________________________

maxima [A]  time = 0.40, size = 29, normalized size = 1.21 log(x)+log(x3x(1x)+2x4+4exx3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x^2*log(x)-x^3+x^2)*exp(log(x)/x)+(4*x-16)*exp(x))/(x^4*exp(log(x)/x)+4*exp(x)*x+2*x^5),x, algori
thm="maxima")

[Out]

-log(x) + log((x^3*x^(1/x) + 2*x^4 + 4*e^x)/x^3)

________________________________________________________________________________________

mupad [B]  time = 4.51, size = 29, normalized size = 1.21 ln(4ex+2x4+x1/xx3x3)ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(log(x)/x)*(x^2*log(x) - x^2 + x^3) - exp(x)*(4*x - 16))/(4*x*exp(x) + x^4*exp(log(x)/x) + 2*x^5),x)

[Out]

log((4*exp(x) + 2*x^4 + x^(1/x)*x^3)/x^3) - log(x)

________________________________________________________________________________________

sympy [A]  time = 0.52, size = 24, normalized size = 1.00 log(x)+log(elog(x)x+2x4+4exx3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x**2*ln(x)-x**3+x**2)*exp(ln(x)/x)+(4*x-16)*exp(x))/(x**4*exp(ln(x)/x)+4*exp(x)*x+2*x**5),x)

[Out]

-log(x) + log(exp(log(x)/x) + (2*x**4 + 4*exp(x))/x**3)

________________________________________________________________________________________