3.73.73 ee1xx2+ee1x(50x2x2+e1x(25+x)+(e1x(25x)+50x+2x2)log(25+x))log(1log(25+x))(502x+(50+2x)log(25+x))log2(1log(25+x))dx

Optimal. Leaf size=25 ee1xx22log(1log(25+x))

________________________________________________________________________________________

Rubi [F]  time = 4.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} ee1xx2+ee1x(50x2x2+e1x(25+x)+(e1x(25x)+50x+2x2)log(25+x))log(1log(25+x))(502x+(50+2x)log(25+x))log2(1log(25+x))dx

Verification is not applicable to the result.

[In]

Int[(-(E^E^x^(-1)*x^2) + E^E^x^(-1)*(-50*x - 2*x^2 + E^x^(-1)*(25 + x) + (E^x^(-1)*(-25 - x) + 50*x + 2*x^2)*L
og[25 + x])*Log[1 - Log[25 + x]])/((-50 - 2*x + (50 + 2*x)*Log[25 + x])*Log[1 - Log[25 + x]]^2),x]

[Out]

(25*Defer[Int][E^E^x^(-1)/((-1 + Log[25 + x])*Log[1 - Log[25 + x]]^2), x])/2 - Defer[Int][(E^E^x^(-1)*x)/((-1
+ Log[25 + x])*Log[1 - Log[25 + x]]^2), x]/2 - (625*Defer[Int][E^E^x^(-1)/((25 + x)*(-1 + Log[25 + x])*Log[1 -
 Log[25 + x]]^2), x])/2 - Defer[Int][E^(E^x^(-1) + x^(-1))/Log[1 - Log[25 + x]], x]/2 + Defer[Int][(E^E^x^(-1)
*x)/Log[1 - Log[25 + x]], x]

Rubi steps

integral=ee1x(x2(25+x)(1+log(25+x))(e1x2x)log(1log(25+x)))2log2(1log(25+x))dx=12ee1x(x2(25+x)(1+log(25+x))(e1x2x)log(1log(25+x)))log2(1log(25+x))dx=12(ee1x+1xlog(1log(25+x))+ee1xx(x50log(1log(25+x))2xlog(1log(25+x))+50log(25+x)log(1log(25+x))+2xlog(25+x)log(1log(25+x)))(25+x)(1+log(25+x))log2(1log(25+x)))dx=(12ee1x+1xlog(1log(25+x))dx)+12ee1xx(x50log(1log(25+x))2xlog(1log(25+x))+50log(25+x)log(1log(25+x))+2xlog(25+x)log(1log(25+x)))(25+x)(1+log(25+x))log2(1log(25+x))dx=(12ee1x+1xlog(1log(25+x))dx)+12ee1xx(x2(25+x)(1+log(25+x))log(1log(25+x)))(25+x)(1log(25+x))log2(1log(25+x))dx=12(ee1xx2(25+x)(1+log(25+x))log2(1log(25+x))+2ee1xxlog(1log(25+x)))dx12ee1x+1xlog(1log(25+x))dx=(12ee1xx2(25+x)(1+log(25+x))log2(1log(25+x))dx)12ee1x+1xlog(1log(25+x))dx+ee1xxlog(1log(25+x))dx=(12(25ee1x(1+log(25+x))log2(1log(25+x))+ee1xx(1+log(25+x))log2(1log(25+x))+625ee1x(25+x)(1+log(25+x))log2(1log(25+x)))dx)12ee1x+1xlog(1log(25+x))dx+ee1xxlog(1log(25+x))dx=(12ee1xx(1+log(25+x))log2(1log(25+x))dx)12ee1x+1xlog(1log(25+x))dx+252ee1x(1+log(25+x))log2(1log(25+x))dx6252ee1x(25+x)(1+log(25+x))log2(1log(25+x))dx+ee1xxlog(1log(25+x))dx

________________________________________________________________________________________

Mathematica [A]  time = 1.33, size = 25, normalized size = 1.00 ee1xx22log(1log(25+x))

Antiderivative was successfully verified.

[In]

Integrate[(-(E^E^x^(-1)*x^2) + E^E^x^(-1)*(-50*x - 2*x^2 + E^x^(-1)*(25 + x) + (E^x^(-1)*(-25 - x) + 50*x + 2*
x^2)*Log[25 + x])*Log[1 - Log[25 + x]])/((-50 - 2*x + (50 + 2*x)*Log[25 + x])*Log[1 - Log[25 + x]]^2),x]

[Out]

(E^E^x^(-1)*x^2)/(2*Log[1 - Log[25 + x]])

________________________________________________________________________________________

fricas [A]  time = 0.91, size = 21, normalized size = 0.84 x2e(e1x)2log(log(x+25)+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((-x-25)*exp(1/x)+2*x^2+50*x)*log(x+25)+(x+25)*exp(1/x)-2*x^2-50*x)*exp(exp(1/x))*log(-log(x+25)+1
)-x^2*exp(exp(1/x)))/((2*x+50)*log(x+25)-2*x-50)/log(-log(x+25)+1)^2,x, algorithm="fricas")

[Out]

1/2*x^2*e^(e^(1/x))/log(-log(x + 25) + 1)

________________________________________________________________________________________

giac [A]  time = 0.27, size = 21, normalized size = 0.84 x2e(e1x)2log(log(x+25)+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((-x-25)*exp(1/x)+2*x^2+50*x)*log(x+25)+(x+25)*exp(1/x)-2*x^2-50*x)*exp(exp(1/x))*log(-log(x+25)+1
)-x^2*exp(exp(1/x)))/((2*x+50)*log(x+25)-2*x-50)/log(-log(x+25)+1)^2,x, algorithm="giac")

[Out]

1/2*x^2*e^(e^(1/x))/log(-log(x + 25) + 1)

________________________________________________________________________________________

maple [A]  time = 0.12, size = 22, normalized size = 0.88




method result size



risch x2ee1x2ln(ln(x+25)+1) 22



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((((-x-25)*exp(1/x)+2*x^2+50*x)*ln(x+25)+(x+25)*exp(1/x)-2*x^2-50*x)*exp(exp(1/x))*ln(-ln(x+25)+1)-x^2*exp
(exp(1/x)))/((2*x+50)*ln(x+25)-2*x-50)/ln(-ln(x+25)+1)^2,x,method=_RETURNVERBOSE)

[Out]

1/2*x^2/ln(-ln(x+25)+1)*exp(exp(1/x))

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 21, normalized size = 0.84 x2e(e1x)2log(log(x+25)+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((-x-25)*exp(1/x)+2*x^2+50*x)*log(x+25)+(x+25)*exp(1/x)-2*x^2-50*x)*exp(exp(1/x))*log(-log(x+25)+1
)-x^2*exp(exp(1/x)))/((2*x+50)*log(x+25)-2*x-50)/log(-log(x+25)+1)^2,x, algorithm="maxima")

[Out]

1/2*x^2*e^(e^(1/x))/log(-log(x + 25) + 1)

________________________________________________________________________________________

mupad [B]  time = 4.99, size = 21, normalized size = 0.84 x2ee1/x2ln(1ln(x+25))

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*exp(exp(1/x)) + exp(exp(1/x))*log(1 - log(x + 25))*(50*x - exp(1/x)*(x + 25) - log(x + 25)*(50*x - ex
p(1/x)*(x + 25) + 2*x^2) + 2*x^2))/(log(1 - log(x + 25))^2*(2*x - log(x + 25)*(2*x + 50) + 50)),x)

[Out]

(x^2*exp(exp(1/x)))/(2*log(1 - log(x + 25)))

________________________________________________________________________________________

sympy [A]  time = 1.47, size = 19, normalized size = 0.76 x2ee1x2log(1log(x+25))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((-x-25)*exp(1/x)+2*x**2+50*x)*ln(x+25)+(x+25)*exp(1/x)-2*x**2-50*x)*exp(exp(1/x))*ln(-ln(x+25)+1)
-x**2*exp(exp(1/x)))/((2*x+50)*ln(x+25)-2*x-50)/ln(-ln(x+25)+1)**2,x)

[Out]

x**2*exp(exp(1/x))/(2*log(1 - log(x + 25)))

________________________________________________________________________________________