3.73.74 exx+(3ex)log(25e215+5ex)3x2exx2+(3x+exx)log(25e215+5ex)dx

Optimal. Leaf size=32 log(1log((5+e25)x3xexx)x)

________________________________________________________________________________________

Rubi [A]  time = 0.97, antiderivative size = 24, normalized size of antiderivative = 0.75, number of steps used = 3, number of rules used = 3, integrand size = 78, number of rulesintegrand size = 0.038, Rules used = {6741, 6712, 31} log(1log(25+e2155ex)x)

Antiderivative was successfully verified.

[In]

Int[(-(E^x*x) + (3 - E^x)*Log[(-25 - E^2)/(-15 + 5*E^x)])/(3*x^2 - E^x*x^2 + (-3*x + E^x*x)*Log[(-25 - E^2)/(-
15 + 5*E^x)]),x]

[Out]

Log[1 - Log[(25 + E^2)/(15 - 5*E^x)]/x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 6712

Int[(u_)*(v_)^(r_.)*((a_.)*(v_)^(p_.) + (b_.)*(w_)^(q_.))^(m_.), x_Symbol] :> With[{c = Simplify[u/(p*w*D[v, x
] - q*v*D[w, x])]}, -Dist[c*q, Subst[Int[(a + b*x^q)^m, x], x, v^(m*p + r + 1)*w], x] /; FreeQ[c, x]] /; FreeQ
[{a, b, m, p, q, r}, x] && EqQ[p + q*(m*p + r + 1), 0] && IntegerQ[q] && IntegerQ[m]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rubi steps

integral=exx+(3ex)log(25e215+5ex)(3ex)x(xlog(25+e2155ex))dx=Subst(11xdx,x,log(25+e2155ex)x)=log(1log(25+e2155ex)x)

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 26, normalized size = 0.81 log(x)+log(xlog(25+e2155ex))

Antiderivative was successfully verified.

[In]

Integrate[(-(E^x*x) + (3 - E^x)*Log[(-25 - E^2)/(-15 + 5*E^x)])/(3*x^2 - E^x*x^2 + (-3*x + E^x*x)*Log[(-25 - E
^2)/(-15 + 5*E^x)]),x]

[Out]

-Log[x] + Log[x - Log[(25 + E^2)/(15 - 5*E^x)]]

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 23, normalized size = 0.72 log(x)+log(x+log(e2+255(ex3)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-exp(x)+3)*log((-exp(2)-25)/(5*exp(x)-15))-exp(x)*x)/((exp(x)*x-3*x)*log((-exp(2)-25)/(5*exp(x)-15
))-exp(x)*x^2+3*x^2),x, algorithm="fricas")

[Out]

-log(x) + log(-x + log(-1/5*(e^2 + 25)/(e^x - 3)))

________________________________________________________________________________________

giac [A]  time = 0.17, size = 23, normalized size = 0.72 log(x)+log(x+log(e2+255(ex3)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-exp(x)+3)*log((-exp(2)-25)/(5*exp(x)-15))-exp(x)*x)/((exp(x)*x-3*x)*log((-exp(2)-25)/(5*exp(x)-15
))-exp(x)*x^2+3*x^2),x, algorithm="giac")

[Out]

-log(x) + log(-x + log(-1/5*(e^2 + 25)/(e^x - 3)))

________________________________________________________________________________________

maple [A]  time = 0.18, size = 27, normalized size = 0.84




method result size



default ln(x)+ln(xln(e2255ex15)) 27
norman ln(x)+ln(xln(e2255ex15)) 27
risch ln(x)+ln(ln(ex3)+i(2πcsgn(iex3)22πcsgn(iex3)32iln(5)+2iln(e225)2ix)2) 66



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-exp(x)+3)*ln((-exp(2)-25)/(5*exp(x)-15))-exp(x)*x)/((exp(x)*x-3*x)*ln((-exp(2)-25)/(5*exp(x)-15))-exp(x
)*x^2+3*x^2),x,method=_RETURNVERBOSE)

[Out]

-ln(x)+ln(x-ln((-exp(2)-25)/(5*exp(x)-15)))

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 24, normalized size = 0.75 log(x+log(5)log(e2+25)+log(ex+3))log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-exp(x)+3)*log((-exp(2)-25)/(5*exp(x)-15))-exp(x)*x)/((exp(x)*x-3*x)*log((-exp(2)-25)/(5*exp(x)-15
))-exp(x)*x^2+3*x^2),x, algorithm="maxima")

[Out]

log(x + log(5) - log(e^2 + 25) + log(-e^x + 3)) - log(x)

________________________________________________________________________________________

mupad [B]  time = 4.60, size = 28, normalized size = 0.88 ln(xln(1ex3)ln(e25+5))ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(-(exp(2) + 25)/(5*exp(x) - 15))*(exp(x) - 3) + x*exp(x))/(x^2*exp(x) - 3*x^2 + log(-(exp(2) + 25)/(5*
exp(x) - 15))*(3*x - x*exp(x))),x)

[Out]

log(x - log(-1/(exp(x) - 3)) - log(exp(2)/5 + 5)) - log(x)

________________________________________________________________________________________

sympy [A]  time = 0.24, size = 20, normalized size = 0.62 log(x)+log(x+log(25e25ex15))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-exp(x)+3)*ln((-exp(2)-25)/(5*exp(x)-15))-exp(x)*x)/((exp(x)*x-3*x)*ln((-exp(2)-25)/(5*exp(x)-15))
-exp(x)*x**2+3*x**2),x)

[Out]

-log(x) + log(-x + log((-25 - exp(2))/(5*exp(x) - 15)))

________________________________________________________________________________________