Optimal. Leaf size=32 \[ e^2+e^{1+4 \left (2+\frac {5 (2 x-\log (2))}{x \left (e^x+x\right )}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 12.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}} \left (-40 x^2+40 x \log (2)+e^x \left (-40 x^2+(20+20 x) \log (2)\right )\right )}{e^{2 x} x^2+2 e^x x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}} \left (-40 x^2+40 x \log (2)+e^x \left (-40 x^2+(20+20 x) \log (2)\right )\right )}{x^2 \left (e^x+x\right )^2} \, dx\\ &=\int \left (\frac {20 e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}} (-1+x) (2 x-\log (2))}{x \left (e^x+x\right )^2}-\frac {20 e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}} \left (2 x^2-\log (2)-x \log (2)\right )}{x^2 \left (e^x+x\right )}\right ) \, dx\\ &=20 \int \frac {e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}} (-1+x) (2 x-\log (2))}{x \left (e^x+x\right )^2} \, dx-20 \int \frac {e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}} \left (2 x^2-\log (2)-x \log (2)\right )}{x^2 \left (e^x+x\right )} \, dx\\ &=20 \int \left (\frac {2 e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}} x}{\left (e^x+x\right )^2}-\frac {2 e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}} \left (1+\frac {\log (2)}{2}\right )}{\left (e^x+x\right )^2}+\frac {e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}} \log (2)}{x \left (e^x+x\right )^2}\right ) \, dx-20 \int \left (\frac {2 e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}}}{e^x+x}-\frac {e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}} \log (2)}{x^2 \left (e^x+x\right )}-\frac {e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}} \log (2)}{x \left (e^x+x\right )}\right ) \, dx\\ &=40 \int \frac {e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}} x}{\left (e^x+x\right )^2} \, dx-40 \int \frac {e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}}}{e^x+x} \, dx+(20 \log (2)) \int \frac {e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}}}{x \left (e^x+x\right )^2} \, dx+(20 \log (2)) \int \frac {e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}}}{x^2 \left (e^x+x\right )} \, dx+(20 \log (2)) \int \frac {e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}}}{x \left (e^x+x\right )} \, dx-(20 (2+\log (2))) \int \frac {e^{\frac {40 x+9 e^x x+9 x^2-20 \log (2)}{e^x x+x^2}}}{\left (e^x+x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.59, size = 36, normalized size = 1.12 \begin {gather*} 2^{-\frac {20}{e^x x+x^2}} e^{\frac {40+9 e^x+9 x}{e^x+x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 30, normalized size = 0.94 \begin {gather*} e^{\left (\frac {9 \, x^{2} + 9 \, x e^{x} + 40 \, x - 20 \, \log \relax (2)}{x^{2} + x e^{x}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 30, normalized size = 0.94
method | result | size |
risch | \({\mathrm e}^{\frac {9 \,{\mathrm e}^{x} x -20 \ln \relax (2)+9 x^{2}+40 x}{\left ({\mathrm e}^{x}+x \right ) x}}\) | \(30\) |
norman | \(\frac {x^{2} {\mathrm e}^{\frac {9 \,{\mathrm e}^{x} x -20 \ln \relax (2)+9 x^{2}+40 x}{{\mathrm e}^{x} x +x^{2}}}+{\mathrm e}^{x} x \,{\mathrm e}^{\frac {9 \,{\mathrm e}^{x} x -20 \ln \relax (2)+9 x^{2}+40 x}{{\mathrm e}^{x} x +x^{2}}}}{\left ({\mathrm e}^{x}+x \right ) x}\) | \(80\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.02, size = 37, normalized size = 1.16 \begin {gather*} e^{\left (-\frac {20 \, e^{\left (-x\right )} \log \relax (2)}{x} + \frac {20 \, \log \relax (2)}{x e^{x} + e^{\left (2 \, x\right )}} + \frac {40}{x + e^{x}} + 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.02, size = 63, normalized size = 1.97 \begin {gather*} \frac {{\mathrm {e}}^{\frac {9\,x\,{\mathrm {e}}^x}{x\,{\mathrm {e}}^x+x^2}}\,{\mathrm {e}}^{\frac {40\,x}{x\,{\mathrm {e}}^x+x^2}}\,{\mathrm {e}}^{\frac {9\,x^2}{x\,{\mathrm {e}}^x+x^2}}}{2^{\frac {20}{x\,{\mathrm {e}}^x+x^2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 29, normalized size = 0.91 \begin {gather*} e^{\frac {9 x^{2} + 9 x e^{x} + 40 x - 20 \log {\relax (2 )}}{x^{2} + x e^{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________