Optimal. Leaf size=30 \[ \frac {e^x \log (3)}{x \left (x+x \log \left (9 e^{-x}\right )-x \log (2 x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.75, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x (-1+2 x) \log (3)+e^x (-2+x) \log (3) \log \left (9 e^{-x}\right )+e^x (2-x) \log (3) \log (2 x)}{x^3+x^3 \log ^2\left (9 e^{-x}\right )-2 x^3 \log (2 x)+x^3 \log ^2(2 x)+\log \left (9 e^{-x}\right ) \left (2 x^3-2 x^3 \log (2 x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \log (3) \left (-1+2 x+(-2+x) \log \left (9 e^{-x}\right )-(-2+x) \log (2 x)\right )}{x^3 \left (1+\log \left (9 e^{-x}\right )-\log (2 x)\right )^2} \, dx\\ &=\log (3) \int \frac {e^x \left (-1+2 x+(-2+x) \log \left (9 e^{-x}\right )-(-2+x) \log (2 x)\right )}{x^3 \left (1+\log \left (9 e^{-x}\right )-\log (2 x)\right )^2} \, dx\\ &=\log (3) \int \left (\frac {e^x (1+x)}{x^3 \left (1+\log \left (9 e^{-x}\right )-\log (2 x)\right )^2}+\frac {e^x (-2+x)}{x^3 \left (1+\log \left (9 e^{-x}\right )-\log (2 x)\right )}\right ) \, dx\\ &=\log (3) \int \frac {e^x (1+x)}{x^3 \left (1+\log \left (9 e^{-x}\right )-\log (2 x)\right )^2} \, dx+\log (3) \int \frac {e^x (-2+x)}{x^3 \left (1+\log \left (9 e^{-x}\right )-\log (2 x)\right )} \, dx\\ &=\log (3) \int \left (\frac {e^x}{x^3 \left (1+\log \left (9 e^{-x}\right )-\log (2 x)\right )^2}+\frac {e^x}{x^2 \left (1+\log \left (9 e^{-x}\right )-\log (2 x)\right )^2}\right ) \, dx+\log (3) \int \left (-\frac {2 e^x}{x^3 \left (1+\log \left (9 e^{-x}\right )-\log (2 x)\right )}+\frac {e^x}{x^2 \left (1+\log \left (9 e^{-x}\right )-\log (2 x)\right )}\right ) \, dx\\ &=\log (3) \int \frac {e^x}{x^3 \left (1+\log \left (9 e^{-x}\right )-\log (2 x)\right )^2} \, dx+\log (3) \int \frac {e^x}{x^2 \left (1+\log \left (9 e^{-x}\right )-\log (2 x)\right )^2} \, dx+\log (3) \int \frac {e^x}{x^2 \left (1+\log \left (9 e^{-x}\right )-\log (2 x)\right )} \, dx-(2 \log (3)) \int \frac {e^x}{x^3 \left (1+\log \left (9 e^{-x}\right )-\log (2 x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.57, size = 28, normalized size = 0.93 \begin {gather*} -\frac {e^x \log (3)}{x^2 \left (-1-\log \left (9 e^{-x}\right )+\log (2 x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 32, normalized size = 1.07 \begin {gather*} -\frac {e^{x} \log \relax (3)}{x^{3} - 2 \, x^{2} \log \relax (3) + x^{2} \log \left (2 \, x\right ) - x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 36, normalized size = 1.20 \begin {gather*} -\frac {e^{x} \log \relax (3)}{x^{3} - 2 \, x^{2} \log \relax (3) + x^{2} \log \relax (2) + x^{2} \log \relax (x) - x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 29, normalized size = 0.97
method | result | size |
risch | \(\frac {2 \ln \relax (3) {\mathrm e}^{x}}{x^{2} \left (2+4 \ln \relax (3)-2 \ln \left (2 x \right )-2 \ln \left ({\mathrm e}^{x}\right )\right )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.76, size = 33, normalized size = 1.10 \begin {gather*} -\frac {e^{x} \log \relax (3)}{x^{3} - x^{2} {\left (2 \, \log \relax (3) - \log \relax (2) + 1\right )} + x^{2} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.92, size = 50, normalized size = 1.67 \begin {gather*} \frac {{\mathrm {e}}^x\,\left (\ln \relax (3)-2\,\ln \left (2\,x\right )\,\ln \relax (3)+\ln \left (2\,x\right )\,\ln \relax (9)+x\,\ln \relax (3)\right )}{x^2\,\left (x+1\right )\,\left (\ln \left (9\,{\mathrm {e}}^{-x}\right )-\ln \left (2\,x\right )+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 31, normalized size = 1.03 \begin {gather*} - \frac {e^{x} \log {\relax (3 )}}{x^{3} + x^{2} \log {\left (2 x \right )} - 2 x^{2} \log {\relax (3 )} - x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________