3.73.77 e84x(2e8+4xx4+e4(1520x24x4))2x4dx

Optimal. Leaf size=21 e44(2+x)(3+52x3)+x

________________________________________________________________________________________

Rubi [A]  time = 0.40, antiderivative size = 25, normalized size of antiderivative = 1.19, number of steps used = 13, number of rules used = 6, integrand size = 41, number of rulesintegrand size = 0.146, Rules used = {12, 6688, 2199, 2194, 2177, 2178} 5e124x2x3+x+3e124x

Antiderivative was successfully verified.

[In]

Int[(E^(8 - 4*x)*(2*E^(-8 + 4*x)*x^4 + E^4*(-15 - 20*x - 24*x^4)))/(2*x^4),x]

[Out]

3*E^(12 - 4*x) + (5*E^(12 - 4*x))/(2*x^3) + x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2177

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
 + 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] &&  !$UseGamma ===
True

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2199

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] &&  !$UseGamma === True

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

integral=12e84x(2e8+4xx4+e4(1520x24x4))x4dx=12(2e124x(15+20x+24x4)x4)dx=x12e124x(15+20x+24x4)x4dx=x12(24e124x+15e124xx4+20e124xx3)dx=x152e124xx4dx10e124xx3dx12e124xdx=3e124x+5e124x2x3+5e124xx2+x+10e124xx3dx+20e124xx2dx=3e124x+5e124x2x320e124xx+x20e124xx2dx80e124xxdx=3e124x+5e124x2x3+x80e12Ei(4x)+80e124xxdx=3e124x+5e124x2x3+x

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 25, normalized size = 1.19 3e124x+5e124x2x3+x

Antiderivative was successfully verified.

[In]

Integrate[(E^(8 - 4*x)*(2*E^(-8 + 4*x)*x^4 + E^4*(-15 - 20*x - 24*x^4)))/(2*x^4),x]

[Out]

3*E^(12 - 4*x) + (5*E^(12 - 4*x))/(2*x^3) + x

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 33, normalized size = 1.57 (2x4e(4x8)+(6x3+5)e4)e(4x+8)2x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(2*x^4*exp(4*x-8)+(-24*x^4-20*x-15)*exp(4))/x^4/exp(4*x-8),x, algorithm="fricas")

[Out]

1/2*(2*x^4*e^(4*x - 8) + (6*x^3 + 5)*e^4)*e^(-4*x + 8)/x^3

________________________________________________________________________________________

giac [A]  time = 0.20, size = 30, normalized size = 1.43 2x4+6x3e(4x+12)+5e(4x+12)2x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(2*x^4*exp(4*x-8)+(-24*x^4-20*x-15)*exp(4))/x^4/exp(4*x-8),x, algorithm="giac")

[Out]

1/2*(2*x^4 + 6*x^3*e^(-4*x + 12) + 5*e^(-4*x + 12))/x^3

________________________________________________________________________________________

maple [A]  time = 0.12, size = 21, normalized size = 1.00




method result size



risch x+(6x3+5)e4x+122x3 21
norman (x4e4x8+3x3e4+5e42)e4x+8x3 35
derivativedivides x214048e4(e4x+8((4x8)2+60x62)384x3+e8\expIntegralEi(1,4x)6)6304e4(e4x+8(11(4x8)2+660x688)384x311e8\expIntegralEi(1,4x)6)1152e4(e4x+8(59(4x8)2+3552x3712)192x3+59e8\expIntegralEi(1,4x)3)96e4(e4x+8(77(4x8)2+4656x4864)24x3619e8\expIntegralEi(1,4x)3)3e4(e4x+82e4x+8(49(4x8)2+2976x3104)3x3+6368e8\expIntegralEi(1,4x)3) 205
default x214048e4(e4x+8((4x8)2+60x62)384x3+e8\expIntegralEi(1,4x)6)6304e4(e4x+8(11(4x8)2+660x688)384x311e8\expIntegralEi(1,4x)6)1152e4(e4x+8(59(4x8)2+3552x3712)192x3+59e8\expIntegralEi(1,4x)3)96e4(e4x+8(77(4x8)2+4656x4864)24x3619e8\expIntegralEi(1,4x)3)3e4(e4x+82e4x+8(49(4x8)2+2976x3104)3x3+6368e8\expIntegralEi(1,4x)3) 205
meijerg e4x+4xe8(1e4x(e8+1))4(e8+1)3e4x+4+4xe8(1e4xe8)160e4x+28+4xe8(e1632x2+e84x+134+ln(x)2+ln(2)+e16(144x2e1648xe8+6)192x2e164xe8(12xe8+3)96x2ln(4xe8)2\expIntegralEi(1,4xe8)2)480e4xe8+364x(e24192x3+e1632x2e88x3736ln(x)6ln(2)3+e24(1408x3e24+576x2e16144xe8+24)4608x3e244xe8(64x2e1616xe8+8)1536x3+ln(4xe8)6+\expIntegralEi(1,4xe8)6) 268



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/2*(2*x^4*exp(4*x-8)+(-24*x^4-20*x-15)*exp(4))/x^4/exp(4*x-8),x,method=_RETURNVERBOSE)

[Out]

x+1/2/x^3*(6*x^3+5)*exp(-4*x+12)

________________________________________________________________________________________

maxima [C]  time = 0.39, size = 28, normalized size = 1.33 160e12Γ(2,4x)+480e12Γ(3,4x)+x+3e(4x+12)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(2*x^4*exp(4*x-8)+(-24*x^4-20*x-15)*exp(4))/x^4/exp(4*x-8),x, algorithm="maxima")

[Out]

160*e^12*gamma(-2, 4*x) + 480*e^12*gamma(-3, 4*x) + x + 3*e^(-4*x + 12)

________________________________________________________________________________________

mupad [B]  time = 4.24, size = 21, normalized size = 1.00 x+3e124x+5e124x2x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(8 - 4*x)*((exp(4)*(20*x + 24*x^4 + 15))/2 - x^4*exp(4*x - 8)))/x^4,x)

[Out]

x + 3*exp(12 - 4*x) + (5*exp(12 - 4*x))/(2*x^3)

________________________________________________________________________________________

sympy [A]  time = 0.15, size = 26, normalized size = 1.24 x+(6x3e4+5e4)e84x2x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(2*x**4*exp(4*x-8)+(-24*x**4-20*x-15)*exp(4))/x**4/exp(4*x-8),x)

[Out]

x + (6*x**3*exp(4) + 5*exp(4))*exp(8 - 4*x)/(2*x**3)

________________________________________________________________________________________