3.73.78 12501250exe3+2x+625x+e3x2+ex(625+2e3x)dx

Optimal. Leaf size=18 2+log((e3+625ex+x)2)

________________________________________________________________________________________

Rubi [F]  time = 0.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 12501250exe3+2x+625x+e3x2+ex(625+2e3x)dx

Verification is not applicable to the result.

[In]

Int[(-1250 - 1250*E^x)/(E^(3 + 2*x) + 625*x + E^3*x^2 + E^x*(625 + 2*E^3*x)),x]

[Out]

-2*Defer[Int][(E^x + x)^(-1), x] + 2*Defer[Int][x/(E^x + x), x] - 2*(625 - E^3)*Defer[Int][(625 + E^(3 + x) +
E^3*x)^(-1), x] - 2*E^3*Defer[Int][x/(625 + E^(3 + x) + E^3*x), x]

Rubi steps

integral=1250(1ex)e3+2x+625x+e3x2+ex(625+2e3x)dx=12501exe3+2x+625x+e3x2+ex(625+2e3x)dx=1250(1+x625(ex+x)625e3+e3x625(625+e3+x+e3x))dx=21+xex+xdx2625e3+e3x625+e3+x+e3xdx=2(1ex+x+xex+x)dx2(625(1e3625)625+e3+x+e3x+e3x625+e3+x+e3x)dx=(21ex+xdx)+2xex+xdx(2e3)x625+e3+x+e3xdx(2(625e3))1625+e3+x+e3xdx

________________________________________________________________________________________

Mathematica [A]  time = 0.14, size = 30, normalized size = 1.67 1250(1625log(ex+x)1625log(625+e3+x+e3x))

Antiderivative was successfully verified.

[In]

Integrate[(-1250 - 1250*E^x)/(E^(3 + 2*x) + 625*x + E^3*x^2 + E^x*(625 + 2*E^3*x)),x]

[Out]

-1250*(Log[E^x + x]/625 - Log[625 + E^(3 + x) + E^3*x]/625)

________________________________________________________________________________________

fricas [A]  time = 0.65, size = 21, normalized size = 1.17 2log(xe3+e(x+3)+625)2log(x+ex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1250*exp(x)-1250)/(exp(3)*exp(x)^2+(2*x*exp(3)+625)*exp(x)+x^2*exp(3)+625*x),x, algorithm="fricas"
)

[Out]

2*log(x*e^3 + e^(x + 3) + 625) - 2*log(x + e^x)

________________________________________________________________________________________

giac [A]  time = 0.21, size = 24, normalized size = 1.33 2log(xe3e(x+3)625)2log(x+ex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1250*exp(x)-1250)/(exp(3)*exp(x)^2+(2*x*exp(3)+625)*exp(x)+x^2*exp(3)+625*x),x, algorithm="giac")

[Out]

2*log(-x*e^3 - e^(x + 3) - 625) - 2*log(x + e^x)

________________________________________________________________________________________

maple [A]  time = 0.11, size = 23, normalized size = 1.28




method result size



norman 2ln(ex+x)+2ln(exe3+xe3+625) 23
risch 2ln(ex+(xe3+625)e3)2ln(ex+x) 24



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-1250*exp(x)-1250)/(exp(3)*exp(x)^2+(2*x*exp(3)+625)*exp(x)+x^2*exp(3)+625*x),x,method=_RETURNVERBOSE)

[Out]

-2*ln(exp(x)+x)+2*ln(exp(x)*exp(3)+x*exp(3)+625)

________________________________________________________________________________________

maxima [A]  time = 0.40, size = 24, normalized size = 1.33 2log((xe3+e(x+3)+625)e(3))2log(x+ex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1250*exp(x)-1250)/(exp(3)*exp(x)^2+(2*x*exp(3)+625)*exp(x)+x^2*exp(3)+625*x),x, algorithm="maxima"
)

[Out]

2*log((x*e^3 + e^(x + 3) + 625)*e^(-3)) - 2*log(x + e^x)

________________________________________________________________________________________

mupad [B]  time = 0.20, size = 19, normalized size = 1.06 2ln(x+625e3+ex)2ln(x+ex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(1250*exp(x) + 1250)/(625*x + exp(2*x)*exp(3) + x^2*exp(3) + exp(x)*(2*x*exp(3) + 625)),x)

[Out]

2*log(x + 625*exp(-3) + exp(x)) - 2*log(x + exp(x))

________________________________________________________________________________________

sympy [A]  time = 0.27, size = 27, normalized size = 1.50 2log(x+ex)+2log(4xe3+25004e3+ex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1250*exp(x)-1250)/(exp(3)*exp(x)**2+(2*x*exp(3)+625)*exp(x)+x**2*exp(3)+625*x),x)

[Out]

-2*log(x + exp(x)) + 2*log((4*x*exp(3) + 2500)*exp(-3)/4 + exp(x))

________________________________________________________________________________________