3.73.85 ex(ex+eex(e15x2+e15+xx2)(2e15+xx3+e15(2x3x4))exlog(x))x2dx

Optimal. Leaf size=24 1+ee15x(x+exx)+log(x)x

________________________________________________________________________________________

Rubi [F]  time = 1.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} ex(ex+eex(e15x2+e15+xx2)(2e15+xx3+e15(2x3x4))exlog(x))x2dx

Verification is not applicable to the result.

[In]

Int[(E^x + E^((E^15*x^2 + E^(15 + x)*x^2)/E^x)*(2*E^(15 + x)*x^3 + E^15*(2*x^3 - x^4)) - E^x*Log[x])/(E^x*x^2)
,x]

[Out]

Log[x]/x + 2*Defer[Int][E^(15 + E^(15 - x)*(1 + E^x)*x^2)*x, x] + 2*Defer[Int][E^(15 - x + E^(15 - x)*(1 + E^x
)*x^2)*x, x] - Defer[Int][E^(15 - x + E^(15 - x)*(1 + E^x)*x^2)*x^2, x]

Rubi steps

integral=1+e15x+e15x(1+ex)x2(2+2exx)x3log(x)x2dx=(e15x+e15x(1+ex)x2(2+2exx)x+1log(x)x2)dx=e15x+e15x(1+ex)x2(2+2exx)xdx+1log(x)x2dx=log(x)x+(2e15+e15x(1+ex)x2xe15x+e15x(1+ex)x2(2+x)x)dx=log(x)x+2e15+e15x(1+ex)x2xdxe15x+e15x(1+ex)x2(2+x)xdx=log(x)x+2e15+e15x(1+ex)x2xdx(2e15x+e15x(1+ex)x2x+e15x+e15x(1+ex)x2x2)dx=log(x)x+2e15+e15x(1+ex)x2xdx+2e15x+e15x(1+ex)x2xdxe15x+e15x(1+ex)x2x2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.43, size = 25, normalized size = 1.04 ee15x(1+ex)x2+log(x)x

Antiderivative was successfully verified.

[In]

Integrate[(E^x + E^((E^15*x^2 + E^(15 + x)*x^2)/E^x)*(2*E^(15 + x)*x^3 + E^15*(2*x^3 - x^4)) - E^x*Log[x])/(E^
x*x^2),x]

[Out]

E^(E^(15 - x)*(1 + E^x)*x^2) + Log[x]/x

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 32, normalized size = 1.33 xe((x2e30+x2e(x+30))e(x15))+log(x)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3*exp(15)*exp(x)+(-x^4+2*x^3)*exp(15))*exp((x^2*exp(15)*exp(x)+x^2*exp(15))/exp(x))-exp(x)*log
(x)+exp(x))/exp(x)/x^2,x, algorithm="fricas")

[Out]

(x*e^((x^2*e^30 + x^2*e^(x + 30))*e^(-x - 15)) + log(x))/x

________________________________________________________________________________________

giac [A]  time = 0.17, size = 25, normalized size = 1.04 log(x)x+e(x2e15+x2e(x+15))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3*exp(15)*exp(x)+(-x^4+2*x^3)*exp(15))*exp((x^2*exp(15)*exp(x)+x^2*exp(15))/exp(x))-exp(x)*log
(x)+exp(x))/exp(x)/x^2,x, algorithm="giac")

[Out]

log(x)/x + e^(x^2*e^15 + x^2*e^(-x + 15))

________________________________________________________________________________________

maple [A]  time = 0.15, size = 24, normalized size = 1.00




method result size



risch ln(x)x+ex2(ex+15+e15)ex 24
default ex2(e15ex+e15)ex+ln(x)x 29



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x^3*exp(15)*exp(x)+(-x^4+2*x^3)*exp(15))*exp((x^2*exp(15)*exp(x)+x^2*exp(15))/exp(x))-exp(x)*ln(x)+exp
(x))/exp(x)/x^2,x,method=_RETURNVERBOSE)

[Out]

ln(x)/x+exp(x^2*(exp(x+15)+exp(15))*exp(-x))

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 34, normalized size = 1.42 xe(x2e15+x2e(x+15))+log(x)+1x1x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3*exp(15)*exp(x)+(-x^4+2*x^3)*exp(15))*exp((x^2*exp(15)*exp(x)+x^2*exp(15))/exp(x))-exp(x)*log
(x)+exp(x))/exp(x)/x^2,x, algorithm="maxima")

[Out]

(x*e^(x^2*e^15 + x^2*e^(-x + 15)) + log(x) + 1)/x - 1/x

________________________________________________________________________________________

mupad [B]  time = 4.46, size = 26, normalized size = 1.08 ln(x)x+ex2e15ex2exe15

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-x)*(exp(x) - exp(x)*log(x) + exp(exp(-x)*(x^2*exp(15) + x^2*exp(15)*exp(x)))*(exp(15)*(2*x^3 - x^4)
+ 2*x^3*exp(15)*exp(x))))/x^2,x)

[Out]

log(x)/x + exp(x^2*exp(15))*exp(x^2*exp(-x)*exp(15))

________________________________________________________________________________________

sympy [A]  time = 0.53, size = 26, normalized size = 1.08 e(x2e15ex+x2e15)ex+log(x)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x**3*exp(15)*exp(x)+(-x**4+2*x**3)*exp(15))*exp((x**2*exp(15)*exp(x)+x**2*exp(15))/exp(x))-exp(x
)*ln(x)+exp(x))/exp(x)/x**2,x)

[Out]

exp((x**2*exp(15)*exp(x) + x**2*exp(15))*exp(-x)) + log(x)/x

________________________________________________________________________________________