3.73.86 e8+12x+12log(x)3x2+3xlog(3)(4x+12x2+4log(3)+(24x12log(3))log(x))3x46x3log(3)+3x2log2(3)dx

Optimal. Leaf size=22 e4(23+x+log(x))x(x+log(3))

________________________________________________________________________________________

Rubi [F]  time = 5.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e8+12x+12log(x)3x2+3xlog(3)(4x+12x2+4log(3)+(24x12log(3))log(x))3x46x3log(3)+3x2log2(3)dx

Verification is not applicable to the result.

[In]

Int[(E^((8 + 12*x + 12*Log[x])/(-3*x^2 + 3*x*Log[3]))*(4*x + 12*x^2 + 4*Log[3] + (24*x - 12*Log[3])*Log[x]))/(
3*x^4 - 6*x^3*Log[3] + 3*x^2*Log[3]^2),x]

[Out]

(4*Defer[Int][E^((4*(2 + 3*x + 3*Log[x]))/(x*(-3*x + Log[27])))/x^2, x])/(3*Log[3]) + (4*Defer[Int][E^((4*(2 +
 3*x + 3*Log[x]))/(x*(-3*x + Log[27])))/x, x])/Log[3]^2 + (4*(2 + Log[27])*Defer[Int][E^((4*(2 + 3*x + 3*Log[x
]))/(x*(-3*x + Log[27])))/(x - Log[3])^2, x])/(3*Log[3]) - (4*Defer[Int][E^((4*(2 + 3*x + 3*Log[x]))/(x*(-3*x
+ Log[27])))/(x - Log[3]), x])/Log[3]^2 - (4*Defer[Int][(E^((4*(2 + 3*x + 3*Log[x]))/(x*(-3*x + Log[27])))*Log
[x])/x^2, x])/Log[3] + (4*Defer[Int][(E^((4*(2 + 3*x + 3*Log[x]))/(x*(-3*x + Log[27])))*Log[x])/(x - Log[3])^2
, x])/Log[3]

Rubi steps

integral=e8+12x+12log(x)3x2+3xlog(3)(4x+12x2+4log(3)+(24x12log(3))log(x))x2(3x26xlog(3)+3log2(3))dx=e8+12x+12log(x)3x2+3xlog(3)(4x+12x2+4log(3)+(24x12log(3))log(x))3x2(xlog(3))2dx=13e8+12x+12log(x)3x2+3xlog(3)(4x+12x2+4log(3)+(24x12log(3))log(x))x2(xlog(3))2dx=134exp(4(2+3x+3log(x))x(3x+log(27)))(x+3x2+log(3)+6xlog(x)3log(3)log(x))x2(xlog(3))2dx=43exp(4(2+3x+3log(x))x(3x+log(27)))(x+3x2+log(3)+6xlog(x)3log(3)log(x))x2(xlog(3))2dx=43(exp(4(2+3x+3log(x))x(3x+log(27)))(x+3x2+log(3))x2(xlog(3))2+3exp(4(2+3x+3log(x))x(3x+log(27)))(2xlog(3))log(x)x2(xlog(3))2)dx=43exp(4(2+3x+3log(x))x(3x+log(27)))(x+3x2+log(3))x2(xlog(3))2dx+4exp(4(2+3x+3log(x))x(3x+log(27)))(2xlog(3))log(x)x2(xlog(3))2dx=43(3exp(4(2+3x+3log(x))x(3x+log(27)))xlog2(3)3exp(4(2+3x+3log(x))x(3x+log(27)))(xlog(3))log2(3)+exp(4(2+3x+3log(x))x(3x+log(27)))x2log(3)+exp(4(2+3x+3log(x))x(3x+log(27)))(2+log(27))(xlog(3))2log(3))dx+4(exp(4(2+3x+3log(x))x(3x+log(27)))log(x)x2log(3)+exp(4(2+3x+3log(x))x(3x+log(27)))log(x)(xlog(3))2log(3))dx=4exp(4(2+3x+3log(x))x(3x+log(27)))xdxlog2(3)4exp(4(2+3x+3log(x))x(3x+log(27)))xlog(3)dxlog2(3)+4exp(4(2+3x+3log(x))x(3x+log(27)))x2dx3log(3)4exp(4(2+3x+3log(x))x(3x+log(27)))log(x)x2dxlog(3)+4exp(4(2+3x+3log(x))x(3x+log(27)))log(x)(xlog(3))2dxlog(3)+(4(2+log(27)))exp(4(2+3x+3log(x))x(3x+log(27)))(xlog(3))2dx3log(3)

________________________________________________________________________________________

Mathematica [A]  time = 1.29, size = 38, normalized size = 1.73 e8+12x3x2xlog(27)x4x2xlog(3)

Antiderivative was successfully verified.

[In]

Integrate[(E^((8 + 12*x + 12*Log[x])/(-3*x^2 + 3*x*Log[3]))*(4*x + 12*x^2 + 4*Log[3] + (24*x - 12*Log[3])*Log[
x]))/(3*x^4 - 6*x^3*Log[3] + 3*x^2*Log[3]^2),x]

[Out]

1/(E^((8 + 12*x)/(3*x^2 - x*Log[27]))*x^(4/(x^2 - x*Log[3])))

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 23, normalized size = 1.05 e(4(3x+3log(x)+2)3(x2xlog(3)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-12*log(3)+24*x)*log(x)+4*log(3)+12*x^2+4*x)*exp((12*log(x)+12*x+8)/(3*x*log(3)-3*x^2))/(3*x^2*log
(3)^2-6*x^3*log(3)+3*x^4),x, algorithm="fricas")

[Out]

e^(-4/3*(3*x + 3*log(x) + 2)/(x^2 - x*log(3)))

________________________________________________________________________________________

giac [A]  time = 0.25, size = 44, normalized size = 2.00 e(4xx2xlog(3)4log(x)x2xlog(3)83(x2xlog(3)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-12*log(3)+24*x)*log(x)+4*log(3)+12*x^2+4*x)*exp((12*log(x)+12*x+8)/(3*x*log(3)-3*x^2))/(3*x^2*log
(3)^2-6*x^3*log(3)+3*x^4),x, algorithm="giac")

[Out]

e^(-4*x/(x^2 - x*log(3)) - 4*log(x)/(x^2 - x*log(3)) - 8/3/(x^2 - x*log(3)))

________________________________________________________________________________________

maple [A]  time = 0.16, size = 24, normalized size = 1.09




method result size



risch e4ln(x)+4x+83x(ln(3)x) 24
norman xln(3)e12ln(x)+12x+83xln(3)3x2x2e12ln(x)+12x+83xln(3)3x2x(ln(3)x) 71



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-12*ln(3)+24*x)*ln(x)+4*ln(3)+12*x^2+4*x)*exp((12*ln(x)+12*x+8)/(3*x*ln(3)-3*x^2))/(3*x^2*ln(3)^2-6*x^3*
ln(3)+3*x^4),x,method=_RETURNVERBOSE)

[Out]

exp(4/3*(3*ln(x)+3*x+2)/x/(ln(3)-x))

________________________________________________________________________________________

maxima [B]  time = 0.59, size = 64, normalized size = 2.91 e(4log(x)xlog(3)log(3)283(xlog(3)log(3)2)4xlog(3)+4log(x)xlog(3)+83xlog(3))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-12*log(3)+24*x)*log(x)+4*log(3)+12*x^2+4*x)*exp((12*log(x)+12*x+8)/(3*x*log(3)-3*x^2))/(3*x^2*log
(3)^2-6*x^3*log(3)+3*x^4),x, algorithm="maxima")

[Out]

e^(-4*log(x)/(x*log(3) - log(3)^2) - 8/3/(x*log(3) - log(3)^2) - 4/(x - log(3)) + 4*log(x)/(x*log(3)) + 8/3/(x
*log(3)))

________________________________________________________________________________________

mupad [B]  time = 4.82, size = 44, normalized size = 2.00 x4xln(3)x2e4xln(3)e83xln(3)3x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp((12*x + 12*log(x) + 8)/(3*x*log(3) - 3*x^2))*(4*x + 4*log(3) + log(x)*(24*x - 12*log(3)) + 12*x^2))/(
3*x^2*log(3)^2 - 6*x^3*log(3) + 3*x^4),x)

[Out]

x^(4/(x*log(3) - x^2))*exp(-4/(x - log(3)))*exp(8/(3*x*log(3) - 3*x^2))

________________________________________________________________________________________

sympy [A]  time = 0.76, size = 22, normalized size = 1.00 e12x+12log(x)+83x2+3xlog(3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-12*ln(3)+24*x)*ln(x)+4*ln(3)+12*x**2+4*x)*exp((12*ln(x)+12*x+8)/(3*x*ln(3)-3*x**2))/(3*x**2*ln(3)
**2-6*x**3*ln(3)+3*x**4),x)

[Out]

exp((12*x + 12*log(x) + 8)/(-3*x**2 + 3*x*log(3)))

________________________________________________________________________________________