3.73.86
Optimal. Leaf size=22
________________________________________________________________________________________
Rubi [F] time = 5.46, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^((8 + 12*x + 12*Log[x])/(-3*x^2 + 3*x*Log[3]))*(4*x + 12*x^2 + 4*Log[3] + (24*x - 12*Log[3])*Log[x]))/(
3*x^4 - 6*x^3*Log[3] + 3*x^2*Log[3]^2),x]
[Out]
(4*Defer[Int][E^((4*(2 + 3*x + 3*Log[x]))/(x*(-3*x + Log[27])))/x^2, x])/(3*Log[3]) + (4*Defer[Int][E^((4*(2 +
3*x + 3*Log[x]))/(x*(-3*x + Log[27])))/x, x])/Log[3]^2 + (4*(2 + Log[27])*Defer[Int][E^((4*(2 + 3*x + 3*Log[x
]))/(x*(-3*x + Log[27])))/(x - Log[3])^2, x])/(3*Log[3]) - (4*Defer[Int][E^((4*(2 + 3*x + 3*Log[x]))/(x*(-3*x
+ Log[27])))/(x - Log[3]), x])/Log[3]^2 - (4*Defer[Int][(E^((4*(2 + 3*x + 3*Log[x]))/(x*(-3*x + Log[27])))*Log
[x])/x^2, x])/Log[3] + (4*Defer[Int][(E^((4*(2 + 3*x + 3*Log[x]))/(x*(-3*x + Log[27])))*Log[x])/(x - Log[3])^2
, x])/Log[3]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 1.29, size = 38, normalized size = 1.73
Antiderivative was successfully verified.
[In]
Integrate[(E^((8 + 12*x + 12*Log[x])/(-3*x^2 + 3*x*Log[3]))*(4*x + 12*x^2 + 4*Log[3] + (24*x - 12*Log[3])*Log[
x]))/(3*x^4 - 6*x^3*Log[3] + 3*x^2*Log[3]^2),x]
[Out]
1/(E^((8 + 12*x)/(3*x^2 - x*Log[27]))*x^(4/(x^2 - x*Log[3])))
________________________________________________________________________________________
fricas [A] time = 0.69, size = 23, normalized size = 1.05
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-12*log(3)+24*x)*log(x)+4*log(3)+12*x^2+4*x)*exp((12*log(x)+12*x+8)/(3*x*log(3)-3*x^2))/(3*x^2*log
(3)^2-6*x^3*log(3)+3*x^4),x, algorithm="fricas")
[Out]
e^(-4/3*(3*x + 3*log(x) + 2)/(x^2 - x*log(3)))
________________________________________________________________________________________
giac [A] time = 0.25, size = 44, normalized size = 2.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-12*log(3)+24*x)*log(x)+4*log(3)+12*x^2+4*x)*exp((12*log(x)+12*x+8)/(3*x*log(3)-3*x^2))/(3*x^2*log
(3)^2-6*x^3*log(3)+3*x^4),x, algorithm="giac")
[Out]
e^(-4*x/(x^2 - x*log(3)) - 4*log(x)/(x^2 - x*log(3)) - 8/3/(x^2 - x*log(3)))
________________________________________________________________________________________
maple [A] time = 0.16, size = 24, normalized size = 1.09
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-12*ln(3)+24*x)*ln(x)+4*ln(3)+12*x^2+4*x)*exp((12*ln(x)+12*x+8)/(3*x*ln(3)-3*x^2))/(3*x^2*ln(3)^2-6*x^3*
ln(3)+3*x^4),x,method=_RETURNVERBOSE)
[Out]
exp(4/3*(3*ln(x)+3*x+2)/x/(ln(3)-x))
________________________________________________________________________________________
maxima [B] time = 0.59, size = 64, normalized size = 2.91
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-12*log(3)+24*x)*log(x)+4*log(3)+12*x^2+4*x)*exp((12*log(x)+12*x+8)/(3*x*log(3)-3*x^2))/(3*x^2*log
(3)^2-6*x^3*log(3)+3*x^4),x, algorithm="maxima")
[Out]
e^(-4*log(x)/(x*log(3) - log(3)^2) - 8/3/(x*log(3) - log(3)^2) - 4/(x - log(3)) + 4*log(x)/(x*log(3)) + 8/3/(x
*log(3)))
________________________________________________________________________________________
mupad [B] time = 4.82, size = 44, normalized size = 2.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp((12*x + 12*log(x) + 8)/(3*x*log(3) - 3*x^2))*(4*x + 4*log(3) + log(x)*(24*x - 12*log(3)) + 12*x^2))/(
3*x^2*log(3)^2 - 6*x^3*log(3) + 3*x^4),x)
[Out]
x^(4/(x*log(3) - x^2))*exp(-4/(x - log(3)))*exp(8/(3*x*log(3) - 3*x^2))
________________________________________________________________________________________
sympy [A] time = 0.76, size = 22, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-12*ln(3)+24*x)*ln(x)+4*ln(3)+12*x**2+4*x)*exp((12*ln(x)+12*x+8)/(3*x*ln(3)-3*x**2))/(3*x**2*ln(3)
**2-6*x**3*ln(3)+3*x**4),x)
[Out]
exp((12*x + 12*log(x) + 8)/(-3*x**2 + 3*x*log(3)))
________________________________________________________________________________________