3.73.91 16x+4e4x+16x2+x3+e2x2e2x(16+x)+exe2x(52x+2x2+e4(4x+4e2x)+e2(16x4x2))e2x2e2xx2exe2xx2+x3dx

Optimal. Leaf size=32 x4(4+e4x)exe2x+x+16log(x)

________________________________________________________________________________________

Rubi [F]  time = 6.91, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 16x+4e4x+16x2+x3+e2x2e2x(16+x)+exe2x(52x+2x2+e4(4x+4e2x)+e2(16x4x2))e2x2e2xx2exe2xx2+x3dx

Verification is not applicable to the result.

[In]

Int[(16*x + 4*E^4*x + 16*x^2 + x^3 + E^(2*x - 2*E^2*x)*(16 + x) + E^(x - E^2*x)*(-52*x + 2*x^2 + E^4*(-4*x + 4
*E^2*x) + E^2*(16*x - 4*x^2)))/(E^(2*x - 2*E^2*x)*x - 2*E^(x - E^2*x)*x^2 + x^3),x]

[Out]

-4/(E^((1 - E^2)*x)*(1 - E^2)) + x + (4*(5 - 4*E^2 + E^4 - E^6 - (1 - E^2)*x))/(E^((1 - E^2)*x)*(1 - E^2)) + 1
6*Log[x] + 4*(4 + E^4)*Defer[Int][E^(2*E^2*x)/(E^x - E^(E^2*x)*x)^2, x] - 4*(5 - 4*E^2 + E^4 - E^6)*Defer[Int]
[(E^(2*E^2*x)*x)/(-E^x + E^(E^2*x)*x)^2, x] + 4*(1 - E)*(1 + E)*Defer[Int][(E^(2*E^2*x)*x^2)/(-E^x + E^(E^2*x)
*x)^2, x] + 4*(5 - 4*E^2 + E^4 - E^6)*Defer[Int][x/(E^((1 - 2*E^2)*x)*(-E^x + E^(E^2*x)*x)), x] - 4*(1 - E)*(1
 + E)*Defer[Int][x^2/(E^((1 - 2*E^2)*x)*(-E^x + E^(E^2*x)*x)), x]

Rubi steps

integral=(16+4e4)x+16x2+x3+e2x2e2x(16+x)+exe2x(52x+2x2+e4(4x+4e2x)+e2(16x4x2))e2x2e2xx2exe2xx2+x3dx=e2e2x((16+4e4)x+16x2+x3+e2x2e2x(16+x)+exe2x(52x+2x2+e4(4x+4e2x)+e2(16x4x2)))x(exee2xx)2dx=(16+xx+4e2e2x(1+e2)x(5+4e2e4+e6+(1e2)x)+4ex+2e2xx(5+4e2e4+e6+(1e2)x)exee2xx+4e2e2x(4+e4(54e2+e4e6)x+(1e2)x2)(exee2xx)2)dx=4e2e2x(1+e2)x(5+4e2e4+e6+(1e2)x)dx+4ex+2e2xx(5+4e2e4+e6+(1e2)x)exee2xxdx+4e2e2x(4+e4(54e2+e4e6)x+(1e2)x2)(exee2xx)2dx+16+xxdx=4e((1e2)x)(5+4e2e4+e6+(1e2)x)dx+4e((12e2)x)x(5+4e2e4+e6+(1e2)x)exee2xxdx+4(4e2e2x(1+e44)(exee2xx)2+e2e2x(5+4e2e4+e6)x(ex+ee2xx)2(1+e)e2e2x(1+e)x2(ex+ee2xx)2)dx+(1+16x)dx=x+4e((1e2)x)(54e2+e4e6(1e2)x)1e2+16log(x)+4e(1+e2)xdx+4(e((12e2)x)(5+4e2e4+e6)xex+ee2xx+(1+e)e((12e2)x)(1+e)x2ex+ee2xx)dx(4(1+e)(1+e))e2e2xx2(ex+ee2xx)2dx+(4(4+e4))e2e2x(exee2xx)2dx(4(54e2+e4e6))e2e2xx(ex+ee2xx)2dx=4e((1e2)x)1e2+x+4e((1e2)x)(54e2+e4e6(1e2)x)1e2+16log(x)(4(1+e)(1+e))e2e2xx2(ex+ee2xx)2dx+(4(1+e)(1+e))e((12e2)x)x2ex+ee2xxdx+(4(4+e4))e2e2x(exee2xx)2dx(4(54e2+e4e6))e2e2xx(ex+ee2xx)2dx+(4(54e2+e4e6))e((12e2)x)xex+ee2xxdx

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 49, normalized size = 1.53 4(4+e4)x+x+4ex(4e4+x)x(ex+ee2xx)+16log(x)

Antiderivative was successfully verified.

[In]

Integrate[(16*x + 4*E^4*x + 16*x^2 + x^3 + E^(2*x - 2*E^2*x)*(16 + x) + E^(x - E^2*x)*(-52*x + 2*x^2 + E^4*(-4
*x + 4*E^2*x) + E^2*(16*x - 4*x^2)))/(E^(2*x - 2*E^2*x)*x - 2*E^(x - E^2*x)*x^2 + x^3),x]

[Out]

(-4*(4 + E^4))/x + x + (4*E^x*(-4 - E^4 + x))/(x*(-E^x + E^(E^2*x)*x)) + 16*Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.92, size = 54, normalized size = 1.69 x2xe(xe2+x)+16(xe(xe2+x))log(x)+4x4e416xe(xe2+x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x+16)*exp(-exp(2)*x+x)^2+((4*exp(2)*x-4*x)*exp(4)+(-4*x^2+16*x)*exp(2)+2*x^2-52*x)*exp(-exp(2)*x+x
)+4*x*exp(4)+x^3+16*x^2+16*x)/(x*exp(-exp(2)*x+x)^2-2*x^2*exp(-exp(2)*x+x)+x^3),x, algorithm="fricas")

[Out]

(x^2 - x*e^(-x*e^2 + x) + 16*(x - e^(-x*e^2 + x))*log(x) + 4*x - 4*e^4 - 16)/(x - e^(-x*e^2 + x))

________________________________________________________________________________________

giac [A]  time = 0.29, size = 55, normalized size = 1.72 x2xe(xe2+x)+16xlog(x)16e(xe2+x)log(x)+4x4e416xe(xe2+x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x+16)*exp(-exp(2)*x+x)^2+((4*exp(2)*x-4*x)*exp(4)+(-4*x^2+16*x)*exp(2)+2*x^2-52*x)*exp(-exp(2)*x+x
)+4*x*exp(4)+x^3+16*x^2+16*x)/(x*exp(-exp(2)*x+x)^2-2*x^2*exp(-exp(2)*x+x)+x^3),x, algorithm="giac")

[Out]

(x^2 - x*e^(-x*e^2 + x) + 16*x*log(x) - 16*e^(-x*e^2 + x)*log(x) + 4*x - 4*e^4 - 16)/(x - e^(-x*e^2 + x))

________________________________________________________________________________________

maple [A]  time = 0.25, size = 30, normalized size = 0.94




method result size



risch x+16ln(x)4(4x+e4)xe(e21)x 30
norman x2+4ee2x+xxee2x+x164e4xee2x+x+16ln(x) 51



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x+16)*exp(-exp(2)*x+x)^2+((4*exp(2)*x-4*x)*exp(4)+(-4*x^2+16*x)*exp(2)+2*x^2-52*x)*exp(-exp(2)*x+x)+4*x*
exp(4)+x^3+16*x^2+16*x)/(x*exp(-exp(2)*x+x)^2-2*x^2*exp(-exp(2)*x+x)+x^3),x,method=_RETURNVERBOSE)

[Out]

x+16*ln(x)-4*(4-x+exp(4))/(x-exp(-(exp(2)-1)*x))

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 43, normalized size = 1.34 (x24e416)e(xe2)(x4)exxe(xe2)ex+16log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x+16)*exp(-exp(2)*x+x)^2+((4*exp(2)*x-4*x)*exp(4)+(-4*x^2+16*x)*exp(2)+2*x^2-52*x)*exp(-exp(2)*x+x
)+4*x*exp(4)+x^3+16*x^2+16*x)/(x*exp(-exp(2)*x+x)^2-2*x^2*exp(-exp(2)*x+x)+x^3),x, algorithm="maxima")

[Out]

((x^2 - 4*e^4 - 16)*e^(x*e^2) - (x - 4)*e^x)/(x*e^(x*e^2) - e^x) + 16*log(x)

________________________________________________________________________________________

mupad [B]  time = 0.27, size = 45, normalized size = 1.41 16ln(x)4e44x+xexxe2x2+16xexxe2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((16*x + exp(2*x - 2*x*exp(2))*(x + 16) + 4*x*exp(4) - exp(x - x*exp(2))*(52*x - exp(2)*(16*x - 4*x^2) + ex
p(4)*(4*x - 4*x*exp(2)) - 2*x^2) + 16*x^2 + x^3)/(x*exp(2*x - 2*x*exp(2)) - 2*x^2*exp(x - x*exp(2)) + x^3),x)

[Out]

16*log(x) - (4*exp(4) - 4*x + x*exp(x - x*exp(2)) - x^2 + 16)/(x - exp(x - x*exp(2)))

________________________________________________________________________________________

sympy [A]  time = 0.20, size = 26, normalized size = 0.81 x+16log(x)+4x+16+4e4x+exe2+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x+16)*exp(-exp(2)*x+x)**2+((4*exp(2)*x-4*x)*exp(4)+(-4*x**2+16*x)*exp(2)+2*x**2-52*x)*exp(-exp(2)*
x+x)+4*x*exp(4)+x**3+16*x**2+16*x)/(x*exp(-exp(2)*x+x)**2-2*x**2*exp(-exp(2)*x+x)+x**3),x)

[Out]

x + 16*log(x) + (-4*x + 16 + 4*exp(4))/(-x + exp(-x*exp(2) + x))

________________________________________________________________________________________