3.73.91
Optimal. Leaf size=32
________________________________________________________________________________________
Rubi [F] time = 6.91, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(16*x + 4*E^4*x + 16*x^2 + x^3 + E^(2*x - 2*E^2*x)*(16 + x) + E^(x - E^2*x)*(-52*x + 2*x^2 + E^4*(-4*x + 4
*E^2*x) + E^2*(16*x - 4*x^2)))/(E^(2*x - 2*E^2*x)*x - 2*E^(x - E^2*x)*x^2 + x^3),x]
[Out]
-4/(E^((1 - E^2)*x)*(1 - E^2)) + x + (4*(5 - 4*E^2 + E^4 - E^6 - (1 - E^2)*x))/(E^((1 - E^2)*x)*(1 - E^2)) + 1
6*Log[x] + 4*(4 + E^4)*Defer[Int][E^(2*E^2*x)/(E^x - E^(E^2*x)*x)^2, x] - 4*(5 - 4*E^2 + E^4 - E^6)*Defer[Int]
[(E^(2*E^2*x)*x)/(-E^x + E^(E^2*x)*x)^2, x] + 4*(1 - E)*(1 + E)*Defer[Int][(E^(2*E^2*x)*x^2)/(-E^x + E^(E^2*x)
*x)^2, x] + 4*(5 - 4*E^2 + E^4 - E^6)*Defer[Int][x/(E^((1 - 2*E^2)*x)*(-E^x + E^(E^2*x)*x)), x] - 4*(1 - E)*(1
+ E)*Defer[Int][x^2/(E^((1 - 2*E^2)*x)*(-E^x + E^(E^2*x)*x)), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 49, normalized size = 1.53
Antiderivative was successfully verified.
[In]
Integrate[(16*x + 4*E^4*x + 16*x^2 + x^3 + E^(2*x - 2*E^2*x)*(16 + x) + E^(x - E^2*x)*(-52*x + 2*x^2 + E^4*(-4
*x + 4*E^2*x) + E^2*(16*x - 4*x^2)))/(E^(2*x - 2*E^2*x)*x - 2*E^(x - E^2*x)*x^2 + x^3),x]
[Out]
(-4*(4 + E^4))/x + x + (4*E^x*(-4 - E^4 + x))/(x*(-E^x + E^(E^2*x)*x)) + 16*Log[x]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 54, normalized size = 1.69
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x+16)*exp(-exp(2)*x+x)^2+((4*exp(2)*x-4*x)*exp(4)+(-4*x^2+16*x)*exp(2)+2*x^2-52*x)*exp(-exp(2)*x+x
)+4*x*exp(4)+x^3+16*x^2+16*x)/(x*exp(-exp(2)*x+x)^2-2*x^2*exp(-exp(2)*x+x)+x^3),x, algorithm="fricas")
[Out]
(x^2 - x*e^(-x*e^2 + x) + 16*(x - e^(-x*e^2 + x))*log(x) + 4*x - 4*e^4 - 16)/(x - e^(-x*e^2 + x))
________________________________________________________________________________________
giac [A] time = 0.29, size = 55, normalized size = 1.72
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x+16)*exp(-exp(2)*x+x)^2+((4*exp(2)*x-4*x)*exp(4)+(-4*x^2+16*x)*exp(2)+2*x^2-52*x)*exp(-exp(2)*x+x
)+4*x*exp(4)+x^3+16*x^2+16*x)/(x*exp(-exp(2)*x+x)^2-2*x^2*exp(-exp(2)*x+x)+x^3),x, algorithm="giac")
[Out]
(x^2 - x*e^(-x*e^2 + x) + 16*x*log(x) - 16*e^(-x*e^2 + x)*log(x) + 4*x - 4*e^4 - 16)/(x - e^(-x*e^2 + x))
________________________________________________________________________________________
maple [A] time = 0.25, size = 30, normalized size = 0.94
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((x+16)*exp(-exp(2)*x+x)^2+((4*exp(2)*x-4*x)*exp(4)+(-4*x^2+16*x)*exp(2)+2*x^2-52*x)*exp(-exp(2)*x+x)+4*x*
exp(4)+x^3+16*x^2+16*x)/(x*exp(-exp(2)*x+x)^2-2*x^2*exp(-exp(2)*x+x)+x^3),x,method=_RETURNVERBOSE)
[Out]
x+16*ln(x)-4*(4-x+exp(4))/(x-exp(-(exp(2)-1)*x))
________________________________________________________________________________________
maxima [A] time = 0.41, size = 43, normalized size = 1.34
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x+16)*exp(-exp(2)*x+x)^2+((4*exp(2)*x-4*x)*exp(4)+(-4*x^2+16*x)*exp(2)+2*x^2-52*x)*exp(-exp(2)*x+x
)+4*x*exp(4)+x^3+16*x^2+16*x)/(x*exp(-exp(2)*x+x)^2-2*x^2*exp(-exp(2)*x+x)+x^3),x, algorithm="maxima")
[Out]
((x^2 - 4*e^4 - 16)*e^(x*e^2) - (x - 4)*e^x)/(x*e^(x*e^2) - e^x) + 16*log(x)
________________________________________________________________________________________
mupad [B] time = 0.27, size = 45, normalized size = 1.41
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((16*x + exp(2*x - 2*x*exp(2))*(x + 16) + 4*x*exp(4) - exp(x - x*exp(2))*(52*x - exp(2)*(16*x - 4*x^2) + ex
p(4)*(4*x - 4*x*exp(2)) - 2*x^2) + 16*x^2 + x^3)/(x*exp(2*x - 2*x*exp(2)) - 2*x^2*exp(x - x*exp(2)) + x^3),x)
[Out]
16*log(x) - (4*exp(4) - 4*x + x*exp(x - x*exp(2)) - x^2 + 16)/(x - exp(x - x*exp(2)))
________________________________________________________________________________________
sympy [A] time = 0.20, size = 26, normalized size = 0.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x+16)*exp(-exp(2)*x+x)**2+((4*exp(2)*x-4*x)*exp(4)+(-4*x**2+16*x)*exp(2)+2*x**2-52*x)*exp(-exp(2)*
x+x)+4*x*exp(4)+x**3+16*x**2+16*x)/(x*exp(-exp(2)*x+x)**2-2*x**2*exp(-exp(2)*x+x)+x**3),x)
[Out]
x + 16*log(x) + (-4*x + 16 + 4*exp(4))/(-x + exp(-x*exp(2) + x))
________________________________________________________________________________________