Optimal. Leaf size=18 \[ \frac {e^{2 e^{x^2}}}{(-x+\log (x))^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.27, antiderivative size = 70, normalized size of antiderivative = 3.89, number of steps used = 1, number of rules used = 1, integrand size = 67, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.015, Rules used = {2288} \begin {gather*} \frac {e^{2 e^{x^2}-x^2} \left (e^{x^2} x^3-e^{x^2} x^2 \log (x)\right )}{x \left (x^4-3 x^3 \log (x)+3 x^2 \log ^2(x)-x \log ^3(x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{2 e^{x^2}-x^2} \left (e^{x^2} x^3-e^{x^2} x^2 \log (x)\right )}{x \left (x^4-3 x^3 \log (x)+3 x^2 \log ^2(x)-x \log ^3(x)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 18, normalized size = 1.00 \begin {gather*} \frac {e^{2 e^{x^2}}}{(x-\log (x))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 23, normalized size = 1.28 \begin {gather*} \frac {e^{\left (2 \, e^{\left (x^{2}\right )}\right )}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (2 \, x^{3} e^{\left (x^{2}\right )} - 2 \, x^{2} e^{\left (x^{2}\right )} \log \relax (x) - x + 1\right )} e^{\left (2 \, e^{\left (x^{2}\right )}\right )}}{x^{4} - 3 \, x^{3} \log \relax (x) + 3 \, x^{2} \log \relax (x)^{2} - x \log \relax (x)^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {\left (4 x^{2} {\mathrm e}^{x^{2}} \ln \relax (x )-4 x^{3} {\mathrm e}^{x^{2}}+2 x -2\right ) {\mathrm e}^{2 \,{\mathrm e}^{x^{2}}}}{x \ln \relax (x )^{3}-3 x^{2} \ln \relax (x )^{2}+3 x^{3} \ln \relax (x )-x^{4}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 23, normalized size = 1.28 \begin {gather*} \frac {e^{\left (2 \, e^{\left (x^{2}\right )}\right )}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.63, size = 16, normalized size = 0.89 \begin {gather*} \frac {{\mathrm {e}}^{2\,{\mathrm {e}}^{x^2}}}{{\left (x-\ln \relax (x)\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 22, normalized size = 1.22 \begin {gather*} \frac {e^{2 e^{x^{2}}}}{x^{2} - 2 x \log {\relax (x )} + \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________