Optimal. Leaf size=17 \[ \frac {1}{4} e^{6-\frac {3 x}{4 e^4}} x \]
________________________________________________________________________________________
Rubi [B] time = 0.03, antiderivative size = 58, normalized size of antiderivative = 3.41, number of steps used = 3, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {12, 2176, 2194} \begin {gather*} \frac {1}{3} e^{\frac {8 e^4-3 x}{4 e^4}+8}-\frac {1}{12} e^{\frac {8 e^4-3 x}{4 e^4}+4} \left (4 e^4-3 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{16} \int e^{\frac {8 e^4-3 x}{4 e^4}} \left (4 e^4-3 x\right ) \, dx\\ &=-\frac {1}{12} e^{4+\frac {8 e^4-3 x}{4 e^4}} \left (4 e^4-3 x\right )-\frac {1}{4} e^4 \int e^{\frac {8 e^4-3 x}{4 e^4}} \, dx\\ &=\frac {1}{3} e^{8+\frac {8 e^4-3 x}{4 e^4}}-\frac {1}{12} e^{4+\frac {8 e^4-3 x}{4 e^4}} \left (4 e^4-3 x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 17, normalized size = 1.00 \begin {gather*} \frac {1}{4} e^{6-\frac {3 x}{4 e^4}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 18, normalized size = 1.06 \begin {gather*} \frac {1}{4} \, x e^{\left (-\frac {1}{4} \, {\left (3 \, x - 8 \, e^{4}\right )} e^{\left (-4\right )} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 41, normalized size = 2.41 \begin {gather*} \frac {1}{12} \, {\left (3 \, x e^{4} + 4 \, e^{8}\right )} e^{\left (-\frac {1}{4} \, {\left (3 \, x - 8 \, e^{4}\right )} e^{\left (-4\right )}\right )} - \frac {1}{3} \, e^{\left (-\frac {3}{4} \, {\left (x - 8 \, e^{4}\right )} e^{\left (-4\right )} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 1.06
method | result | size |
risch | \(\frac {x \,{\mathrm e}^{4+2 \,{\mathrm e}^{-4} {\mathrm e}^{4}-\frac {3 x \,{\mathrm e}^{-4}}{4}}}{4}\) | \(18\) |
gosper | \(\frac {{\mathrm e}^{4+\frac {\left (8 \,{\mathrm e}^{4}-3 x \right ) {\mathrm e}^{-4}}{4}} x}{4}\) | \(21\) |
norman | \(\frac {{\mathrm e}^{4} x \,{\mathrm e}^{\frac {\left (8 \,{\mathrm e}^{4}-3 x \right ) {\mathrm e}^{-4}}{4}}}{4}\) | \(21\) |
meijerg | \(\frac {{\mathrm e}^{10} \left (1-{\mathrm e}^{-\frac {3 x \,{\mathrm e}^{-4}}{4}}\right )}{3}-\frac {{\mathrm e}^{10} \left (1-\frac {\left (2+\frac {3 x \,{\mathrm e}^{-4}}{2}\right ) {\mathrm e}^{-\frac {3 x \,{\mathrm e}^{-4}}{4}}}{2}\right )}{3}\) | \(37\) |
derivativedivides | \(-\frac {{\mathrm e}^{4} \left ({\mathrm e}^{4} \left ({\mathrm e}^{-\frac {3 x \,{\mathrm e}^{-4}}{4}+2} \left (-\frac {3 x \,{\mathrm e}^{-4}}{4}+2\right )-{\mathrm e}^{-\frac {3 x \,{\mathrm e}^{-4}}{4}+2}\right )-{\mathrm e}^{-\frac {3 x \,{\mathrm e}^{-4}}{4}+2} {\mathrm e}^{4}\right )}{3}\) | \(56\) |
default | \(-\frac {{\mathrm e}^{4} \left ({\mathrm e}^{4} \left ({\mathrm e}^{-\frac {3 x \,{\mathrm e}^{-4}}{4}+2} \left (-\frac {3 x \,{\mathrm e}^{-4}}{4}+2\right )-{\mathrm e}^{-\frac {3 x \,{\mathrm e}^{-4}}{4}+2}\right )-{\mathrm e}^{-\frac {3 x \,{\mathrm e}^{-4}}{4}+2} {\mathrm e}^{4}\right )}{3}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 29, normalized size = 1.71 \begin {gather*} \frac {1}{12} \, {\left (3 \, x e^{6} + 4 \, e^{10}\right )} e^{\left (-\frac {3}{4} \, x e^{\left (-4\right )}\right )} - \frac {1}{3} \, e^{\left (-\frac {3}{4} \, x e^{\left (-4\right )} + 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 11, normalized size = 0.65 \begin {gather*} \frac {x\,{\mathrm {e}}^6\,{\mathrm {e}}^{-\frac {3\,x\,{\mathrm {e}}^{-4}}{4}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 20, normalized size = 1.18 \begin {gather*} \frac {x e^{4} e^{\frac {- \frac {3 x}{4} + 2 e^{4}}{e^{4}}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________