Optimal. Leaf size=30 \[ \frac {4 \log ^2\left (\frac {4 \left (4+16 x^2\right )}{\log \left (x^2\right )}\right )}{\log \left (5+\frac {x}{4}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 8.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (\left (-320-16 x-1280 x^2-64 x^3\right ) \log \left (\frac {20+x}{4}\right )+\left (1280 x^2+64 x^3\right ) \log \left (x^2\right ) \log \left (\frac {20+x}{4}\right )\right ) \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )+\left (-4 x-16 x^3\right ) \log \left (x^2\right ) \log ^2\left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\left (20 x+x^2+80 x^3+4 x^4\right ) \log \left (x^2\right ) \log ^2\left (\frac {20+x}{4}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (\left (-320-16 x-1280 x^2-64 x^3\right ) \log \left (\frac {20+x}{4}\right )+\left (1280 x^2+64 x^3\right ) \log \left (x^2\right ) \log \left (\frac {20+x}{4}\right )\right ) \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )+\left (-4 x-16 x^3\right ) \log \left (x^2\right ) \log ^2\left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{x \left (20+x+80 x^2+4 x^3\right ) \log ^2\left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx\\ &=\int \left (\frac {16 \left (-1-4 x^2+4 x^2 \log \left (x^2\right )\right ) \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{x \left (1+4 x^2\right ) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )}-\frac {4 \log ^2\left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{(20+x) \log ^2\left (5+\frac {x}{4}\right )}\right ) \, dx\\ &=-\left (4 \int \frac {\log ^2\left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{(20+x) \log ^2\left (5+\frac {x}{4}\right )} \, dx\right )+16 \int \frac {\left (-1-4 x^2+4 x^2 \log \left (x^2\right )\right ) \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{x \left (1+4 x^2\right ) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx\\ &=-\left (4 \int \frac {\log ^2\left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{(20+x) \log ^2\left (5+\frac {x}{4}\right )} \, dx\right )+16 \int \left (\frac {\left (-1-4 x^2+4 x^2 \log \left (x^2\right )\right ) \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{x \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )}-\frac {4 x \left (-1-4 x^2+4 x^2 \log \left (x^2\right )\right ) \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\left (1+4 x^2\right ) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )}\right ) \, dx\\ &=-\left (4 \int \frac {\log ^2\left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{(20+x) \log ^2\left (5+\frac {x}{4}\right )} \, dx\right )+16 \int \frac {\left (-1-4 x^2+4 x^2 \log \left (x^2\right )\right ) \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{x \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx-64 \int \frac {x \left (-1-4 x^2+4 x^2 \log \left (x^2\right )\right ) \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\left (1+4 x^2\right ) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx\\ &=-\left (4 \int \frac {\log ^2\left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{(20+x) \log ^2\left (5+\frac {x}{4}\right )} \, dx\right )+16 \int \left (\frac {4 x \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\log \left (5+\frac {x}{4}\right )}-\frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{x \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )}-\frac {4 x \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )}\right ) \, dx-64 \int \left (\frac {4 x^3 \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\left (1+4 x^2\right ) \log \left (5+\frac {x}{4}\right )}-\frac {x \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\left (1+4 x^2\right ) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )}-\frac {4 x^3 \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\left (1+4 x^2\right ) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )}\right ) \, dx\\ &=-\left (4 \int \frac {\log ^2\left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{(20+x) \log ^2\left (5+\frac {x}{4}\right )} \, dx\right )-16 \int \frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{x \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx+64 \int \frac {x \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\log \left (5+\frac {x}{4}\right )} \, dx-64 \int \frac {x \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx+64 \int \frac {x \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\left (1+4 x^2\right ) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx-256 \int \frac {x^3 \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\left (1+4 x^2\right ) \log \left (5+\frac {x}{4}\right )} \, dx+256 \int \frac {x^3 \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\left (1+4 x^2\right ) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx\\ &=-\left (4 \int \frac {\log ^2\left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{(20+x) \log ^2\left (5+\frac {x}{4}\right )} \, dx\right )-16 \int \frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{x \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx+64 \int \frac {x \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\log \left (5+\frac {x}{4}\right )} \, dx-64 \int \frac {x \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx+64 \int \left (-\frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{4 (i-2 x) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )}+\frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{4 (i+2 x) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )}\right ) \, dx-256 \int \left (\frac {x \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{4 \log \left (5+\frac {x}{4}\right )}-\frac {x \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{4 \left (1+4 x^2\right ) \log \left (5+\frac {x}{4}\right )}\right ) \, dx+256 \int \left (\frac {x \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{4 \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )}-\frac {x \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{4 \left (1+4 x^2\right ) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )}\right ) \, dx\\ &=-\left (4 \int \frac {\log ^2\left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{(20+x) \log ^2\left (5+\frac {x}{4}\right )} \, dx\right )-16 \int \frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{(i-2 x) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx-16 \int \frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{x \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx+16 \int \frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{(i+2 x) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx+64 \int \frac {x \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\left (1+4 x^2\right ) \log \left (5+\frac {x}{4}\right )} \, dx-64 \int \frac {x \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\left (1+4 x^2\right ) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx\\ &=-\left (4 \int \frac {\log ^2\left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{(20+x) \log ^2\left (5+\frac {x}{4}\right )} \, dx\right )-16 \int \frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{(i-2 x) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx-16 \int \frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{x \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx+16 \int \frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{(i+2 x) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx+64 \int \left (-\frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{4 (i-2 x) \log \left (5+\frac {x}{4}\right )}+\frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{4 (i+2 x) \log \left (5+\frac {x}{4}\right )}\right ) \, dx-64 \int \left (-\frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{4 (i-2 x) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )}+\frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{4 (i+2 x) \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )}\right ) \, dx\\ &=-\left (4 \int \frac {\log ^2\left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{(20+x) \log ^2\left (5+\frac {x}{4}\right )} \, dx\right )-16 \int \frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{(i-2 x) \log \left (5+\frac {x}{4}\right )} \, dx+16 \int \frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{(i+2 x) \log \left (5+\frac {x}{4}\right )} \, dx-16 \int \frac {\log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{x \log \left (5+\frac {x}{4}\right ) \log \left (x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.18, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (\left (-320-16 x-1280 x^2-64 x^3\right ) \log \left (\frac {20+x}{4}\right )+\left (1280 x^2+64 x^3\right ) \log \left (x^2\right ) \log \left (\frac {20+x}{4}\right )\right ) \log \left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )+\left (-4 x-16 x^3\right ) \log \left (x^2\right ) \log ^2\left (\frac {16+64 x^2}{\log \left (x^2\right )}\right )}{\left (20 x+x^2+80 x^3+4 x^4\right ) \log \left (x^2\right ) \log ^2\left (\frac {20+x}{4}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 28, normalized size = 0.93 \begin {gather*} \frac {4 \, \log \left (\frac {16 \, {\left (4 \, x^{2} + 1\right )}}{\log \left (x^{2}\right )}\right )^{2}}{\log \left (\frac {1}{4} \, x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.83, size = 137, normalized size = 4.57 \begin {gather*} -8 \, {\left (\frac {4 \, \log \relax (2)}{2 \, \log \relax (2) - \log \left (x + 20\right )} - \frac {\log \left (\log \left (x^{2}\right )\right )}{2 \, \log \relax (2) - \log \left (x + 20\right )}\right )} \log \left (4 \, x^{2} + 1\right ) - \frac {64 \, \log \relax (2)^{2}}{2 \, \log \relax (2) - \log \left (x + 20\right )} - \frac {4 \, \log \left (4 \, x^{2} + 1\right )^{2}}{2 \, \log \relax (2) - \log \left (x + 20\right )} + \frac {32 \, \log \relax (2) \log \left (\log \left (x^{2}\right )\right )}{2 \, \log \relax (2) - \log \left (x + 20\right )} - \frac {4 \, \log \left (\log \left (x^{2}\right )\right )^{2}}{2 \, \log \relax (2) - \log \left (x + 20\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 1.00, size = 7928, normalized size = 264.27
method | result | size |
risch | \(\text {Expression too large to display}\) | \(7928\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.56, size = 64, normalized size = 2.13 \begin {gather*} -\frac {4 \, {\left (9 \, \log \relax (2)^{2} + 2 \, {\left (3 \, \log \relax (2) - \log \left (\log \relax (x)\right )\right )} \log \left (4 \, x^{2} + 1\right ) + \log \left (4 \, x^{2} + 1\right )^{2} - 6 \, \log \relax (2) \log \left (\log \relax (x)\right ) + \log \left (\log \relax (x)\right )^{2}\right )}}{2 \, \log \relax (2) - \log \left (x + 20\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.21, size = 28, normalized size = 0.93 \begin {gather*} \frac {4\,{\ln \left (\frac {16\,\left (4\,x^2+1\right )}{\ln \left (x^2\right )}\right )}^2}{\ln \left (\frac {x}{4}+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.84, size = 22, normalized size = 0.73 \begin {gather*} \frac {4 \log {\left (\frac {64 x^{2} + 16}{\log {\left (x^{2} \right )}} \right )}^{2}}{\log {\left (\frac {x}{4} + 5 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________