Optimal. Leaf size=31 \[ \frac {e^{5 x}}{\frac {4}{x}-e^{-x} \left (5-e^3+2 x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{5 x} \left (e^{2 x} (4+20 x)+e^x \left (-28 x^2+6 e^3 x^2-12 x^3\right )\right )}{16 e^{2 x}+25 x^2+e^6 x^2+20 x^3+4 x^4+e^x \left (-40 x+8 e^3 x-16 x^2\right )+e^3 \left (-10 x^2-4 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{5 x} \left (e^{2 x} (4+20 x)+e^x \left (-28 x^2+6 e^3 x^2-12 x^3\right )\right )}{16 e^{2 x}+\left (25+e^6\right ) x^2+20 x^3+4 x^4+e^x \left (-40 x+8 e^3 x-16 x^2\right )+e^3 \left (-10 x^2-4 x^3\right )} \, dx\\ &=\int \frac {2 e^{6 x} \left (3 e^3 x^2-2 x^2 (7+3 x)+2 e^x (1+5 x)\right )}{\left (4 e^x+e^3 x-x (5+2 x)\right )^2} \, dx\\ &=2 \int \frac {e^{6 x} \left (3 e^3 x^2-2 x^2 (7+3 x)+2 e^x (1+5 x)\right )}{\left (4 e^x+e^3 x-x (5+2 x)\right )^2} \, dx\\ &=2 \int \left (\frac {e^{6 x} x \left (5-e^3-\left (1-e^3\right ) x-2 x^2\right )}{2 \left (4 e^x-5 \left (1-\frac {e^3}{5}\right ) x-2 x^2\right )^2}+\frac {e^{6 x} (1+5 x)}{2 \left (4 e^x-5 \left (1-\frac {e^3}{5}\right ) x-2 x^2\right )}\right ) \, dx\\ &=\int \frac {e^{6 x} x \left (5-e^3-\left (1-e^3\right ) x-2 x^2\right )}{\left (4 e^x-5 \left (1-\frac {e^3}{5}\right ) x-2 x^2\right )^2} \, dx+\int \frac {e^{6 x} (1+5 x)}{4 e^x-5 \left (1-\frac {e^3}{5}\right ) x-2 x^2} \, dx\\ &=\int \left (\frac {e^{6 x} \left (5-e^3\right ) x}{\left (4 e^x-5 \left (1-\frac {e^3}{5}\right ) x-2 x^2\right )^2}+\frac {(1-e) e^{6 x} \left (-1-e-e^2\right ) x^2}{\left (4 e^x-5 \left (1-\frac {e^3}{5}\right ) x-2 x^2\right )^2}-\frac {2 e^{6 x} x^3}{\left (4 e^x-5 \left (1-\frac {e^3}{5}\right ) x-2 x^2\right )^2}\right ) \, dx+\int \left (\frac {e^{6 x}}{4 e^x-5 \left (1-\frac {e^3}{5}\right ) x-2 x^2}+\frac {5 e^{6 x} x}{4 e^x-5 \left (1-\frac {e^3}{5}\right ) x-2 x^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{6 x} x^3}{\left (4 e^x-5 \left (1-\frac {e^3}{5}\right ) x-2 x^2\right )^2} \, dx\right )+5 \int \frac {e^{6 x} x}{4 e^x-5 \left (1-\frac {e^3}{5}\right ) x-2 x^2} \, dx+\left ((1-e) \left (-1-e-e^2\right )\right ) \int \frac {e^{6 x} x^2}{\left (4 e^x-5 \left (1-\frac {e^3}{5}\right ) x-2 x^2\right )^2} \, dx+\left (5-e^3\right ) \int \frac {e^{6 x} x}{\left (4 e^x-5 \left (1-\frac {e^3}{5}\right ) x-2 x^2\right )^2} \, dx+\int \frac {e^{6 x}}{4 e^x-5 \left (1-\frac {e^3}{5}\right ) x-2 x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.87, size = 30, normalized size = 0.97 \begin {gather*} \frac {2 e^{6 x} x}{8 e^x+2 e^3 x-2 x (5+2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 27, normalized size = 0.87 \begin {gather*} -\frac {x e^{\left (6 \, x\right )}}{2 \, x^{2} - x e^{3} + 5 \, x - 4 \, e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 547, normalized size = 17.65
method | result | size |
risch | \(\frac {x^{11}}{128}+\frac {3125 x^{7}}{2048}+\frac {625 x^{8}}{512}+\frac {25 x^{10}}{256}+\frac {125 x^{9}}{256}+\frac {3125 x^{6}}{4096}-\frac {625 x^{7} {\mathrm e}^{3}}{512}+\frac {625 x^{6} {\mathrm e}^{6}}{2048}+\frac {x \,{\mathrm e}^{5 x}}{4}+\frac {x^{7} \left (15625+37500 x -12 x \,{\mathrm e}^{15}+9000 x^{2} {\mathrm e}^{6}+2400 x^{3} {\mathrm e}^{6}-2500 \,{\mathrm e}^{9}+9375 \,{\mathrm e}^{6}-18750 \,{\mathrm e}^{3}+64 x^{6}+960 x^{5}+6000 x^{4}+20000 x^{3}+37500 x^{2}-3000 x \,{\mathrm e}^{9}+15000 x \,{\mathrm e}^{6}-2400 x^{4} {\mathrm e}^{3}-37500 x \,{\mathrm e}^{3}-12000 x^{3} {\mathrm e}^{3}-192 x^{5} {\mathrm e}^{3}-30000 x^{2} {\mathrm e}^{3}-1200 x^{2} {\mathrm e}^{9}+{\mathrm e}^{18}+375 \,{\mathrm e}^{12}-30 \,{\mathrm e}^{15}-160 x^{3} {\mathrm e}^{9}+300 x \,{\mathrm e}^{12}+60 x^{2} {\mathrm e}^{12}+240 \,{\mathrm e}^{6} x^{4}\right )}{4096 x \,{\mathrm e}^{3}-8192 x^{2}+16384 \,{\mathrm e}^{x}-20480 x}-\frac {3125 x^{6} {\mathrm e}^{3}}{4096}-\frac {375 \,{\mathrm e}^{3} x^{8}}{512}+\left (\frac {5 x^{2}}{16}-\frac {x^{2} {\mathrm e}^{3}}{16}+\frac {x^{3}}{8}\right ) {\mathrm e}^{4 x}+\left (\frac {25 x^{3}}{64}+\frac {x^{3} {\mathrm e}^{6}}{64}-\frac {5 x^{3} {\mathrm e}^{3}}{32}+\frac {5 x^{4}}{16}-\frac {x^{4} {\mathrm e}^{3}}{16}+\frac {x^{5}}{16}\right ) {\mathrm e}^{3 x}+\left (\frac {125 x^{4}}{256}-\frac {x^{4} {\mathrm e}^{9}}{256}+\frac {15 \,{\mathrm e}^{6} x^{4}}{256}-\frac {75 x^{4} {\mathrm e}^{3}}{256}+\frac {75 x^{5}}{128}+\frac {3 \,{\mathrm e}^{6} x^{5}}{128}-\frac {15 x^{5} {\mathrm e}^{3}}{64}+\frac {15 x^{6}}{64}-\frac {3 x^{6} {\mathrm e}^{3}}{64}+\frac {x^{7}}{32}\right ) {\mathrm e}^{2 x}+\left (\frac {625 x^{5}}{1024}+\frac {{\mathrm e}^{12} x^{5}}{1024}-\frac {5 \,{\mathrm e}^{9} x^{5}}{256}+\frac {75 \,{\mathrm e}^{6} x^{5}}{512}-\frac {125 x^{5} {\mathrm e}^{3}}{256}+\frac {125 x^{6}}{128}-\frac {x^{6} {\mathrm e}^{9}}{128}+\frac {15 x^{6} {\mathrm e}^{6}}{128}-\frac {75 x^{6} {\mathrm e}^{3}}{128}+\frac {75 x^{7}}{128}+\frac {3 x^{7} {\mathrm e}^{6}}{128}-\frac {15 x^{7} {\mathrm e}^{3}}{64}+\frac {5 x^{8}}{32}-\frac {{\mathrm e}^{3} x^{8}}{32}+\frac {x^{9}}{64}\right ) {\mathrm e}^{x}-\frac {125 x^{6} {\mathrm e}^{9}}{2048}+\frac {375 x^{7} {\mathrm e}^{6}}{1024}-\frac {x^{6} {\mathrm e}^{15}}{4096}+\frac {25 x^{6} {\mathrm e}^{12}}{4096}-\frac {5 x^{8} {\mathrm e}^{9}}{512}+\frac {75 x^{8} {\mathrm e}^{6}}{512}+\frac {5 x^{7} {\mathrm e}^{12}}{2048}-\frac {25 x^{7} {\mathrm e}^{9}}{512}-\frac {5 \,{\mathrm e}^{3} x^{10}}{256}+\frac {5 x^{9} {\mathrm e}^{6}}{256}-\frac {25 \,{\mathrm e}^{3} x^{9}}{128}\) | \(547\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 26, normalized size = 0.84 \begin {gather*} -\frac {x e^{\left (6 \, x\right )}}{2 \, x^{2} - x {\left (e^{3} - 5\right )} - 4 \, e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {{\mathrm {e}}^{5\,x}\,\left ({\mathrm {e}}^x\,\left (28\,x^2-6\,x^2\,{\mathrm {e}}^3+12\,x^3\right )-{\mathrm {e}}^{2\,x}\,\left (20\,x+4\right )\right )}{16\,{\mathrm {e}}^{2\,x}-{\mathrm {e}}^3\,\left (4\,x^3+10\,x^2\right )+x^2\,{\mathrm {e}}^6+25\,x^2+20\,x^3+4\,x^4-{\mathrm {e}}^x\,\left (40\,x-8\,x\,{\mathrm {e}}^3+16\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.81, size = 646, normalized size = 20.84 \begin {gather*} \frac {x^{11}}{128} + x^{10} \left (\frac {25}{256} - \frac {5 e^{3}}{256}\right ) + x^{9} \left (- \frac {25 e^{3}}{128} + \frac {125}{256} + \frac {5 e^{6}}{256}\right ) + x^{8} \left (- \frac {5 e^{9}}{512} - \frac {375 e^{3}}{512} + \frac {625}{512} + \frac {75 e^{6}}{512}\right ) + x^{7} \left (- \frac {25 e^{9}}{512} - \frac {625 e^{3}}{512} + \frac {3125}{2048} + \frac {375 e^{6}}{1024} + \frac {5 e^{12}}{2048}\right ) + x^{6} \left (- \frac {e^{15}}{4096} - \frac {125 e^{9}}{2048} - \frac {3125 e^{3}}{4096} + \frac {3125}{4096} + \frac {625 e^{6}}{2048} + \frac {25 e^{12}}{4096}\right ) + \frac {x e^{5 x}}{4} + \frac {\left (134217728 x^{3} - 67108864 x^{2} e^{3} + 335544320 x^{2}\right ) e^{4 x}}{1073741824} + \frac {\left (67108864 x^{5} - 67108864 x^{4} e^{3} + 335544320 x^{4} - 167772160 x^{3} e^{3} + 419430400 x^{3} + 16777216 x^{3} e^{6}\right ) e^{3 x}}{1073741824} + \frac {\left (33554432 x^{7} - 50331648 x^{6} e^{3} + 251658240 x^{6} - 251658240 x^{5} e^{3} + 629145600 x^{5} + 25165824 x^{5} e^{6} - 4194304 x^{4} e^{9} - 314572800 x^{4} e^{3} + 524288000 x^{4} + 62914560 x^{4} e^{6}\right ) e^{2 x}}{1073741824} + \frac {\left (16777216 x^{9} - 33554432 x^{8} e^{3} + 167772160 x^{8} - 251658240 x^{7} e^{3} + 629145600 x^{7} + 25165824 x^{7} e^{6} - 8388608 x^{6} e^{9} - 629145600 x^{6} e^{3} + 1048576000 x^{6} + 125829120 x^{6} e^{6} - 20971520 x^{5} e^{9} - 524288000 x^{5} e^{3} + 655360000 x^{5} + 157286400 x^{5} e^{6} + 1048576 x^{5} e^{12}\right ) e^{x}}{1073741824} + \frac {64 x^{13} - 192 x^{12} e^{3} + 960 x^{12} - 2400 x^{11} e^{3} + 6000 x^{11} + 240 x^{11} e^{6} - 160 x^{10} e^{9} - 12000 x^{10} e^{3} + 20000 x^{10} + 2400 x^{10} e^{6} - 1200 x^{9} e^{9} - 30000 x^{9} e^{3} + 37500 x^{9} + 9000 x^{9} e^{6} + 60 x^{9} e^{12} - 12 x^{8} e^{15} - 3000 x^{8} e^{9} - 37500 x^{8} e^{3} + 37500 x^{8} + 15000 x^{8} e^{6} + 300 x^{8} e^{12} - 30 x^{7} e^{15} - 2500 x^{7} e^{9} - 18750 x^{7} e^{3} + 15625 x^{7} + 9375 x^{7} e^{6} + 375 x^{7} e^{12} + x^{7} e^{18}}{- 8192 x^{2} - 20480 x + 4096 x e^{3} + 16384 e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________