Optimal. Leaf size=24 \[ 1+3 x \left (3-e^x \left (2-\frac {3 x}{2 e}\right )+\log (5)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 33, normalized size of antiderivative = 1.38, number of steps used = 11, number of rules used = 4, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {12, 2196, 2176, 2194} \begin {gather*} \frac {9}{2} e^{x-1} x^2+6 e^x-6 e^x (x+1)+3 x (3+\log (5)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (18 e+e^x \left (e (-12-12 x)+18 x+9 x^2\right )+6 e \log (5)\right ) \, dx}{2 e}\\ &=3 x (3+\log (5))+\frac {\int e^x \left (e (-12-12 x)+18 x+9 x^2\right ) \, dx}{2 e}\\ &=3 x (3+\log (5))+\frac {\int \left (18 e^x x+9 e^x x^2-12 e^{1+x} (1+x)\right ) \, dx}{2 e}\\ &=3 x (3+\log (5))+\frac {9 \int e^x x^2 \, dx}{2 e}-\frac {6 \int e^{1+x} (1+x) \, dx}{e}+\frac {9 \int e^x x \, dx}{e}\\ &=9 e^{-1+x} x+\frac {9}{2} e^{-1+x} x^2-6 e^x (1+x)+3 x (3+\log (5))+\frac {6 \int e^{1+x} \, dx}{e}-\frac {9 \int e^x \, dx}{e}-\frac {9 \int e^x x \, dx}{e}\\ &=-9 e^{-1+x}+6 e^x+\frac {9}{2} e^{-1+x} x^2-6 e^x (1+x)+3 x (3+\log (5))+\frac {9 \int e^x \, dx}{e}\\ &=6 e^x+\frac {9}{2} e^{-1+x} x^2-6 e^x (1+x)+3 x (3+\log (5))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 26, normalized size = 1.08 \begin {gather*} 9 x-6 e^x x+\frac {9}{2} e^{-1+x} x^2+x \log (125) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.99, size = 31, normalized size = 1.29 \begin {gather*} \frac {3}{2} \, {\left (2 \, x e \log \relax (5) + 6 \, x e + {\left (3 \, x^{2} - 4 \, x e\right )} e^{x}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 31, normalized size = 1.29 \begin {gather*} \frac {3}{2} \, {\left (3 \, x^{2} e^{x} + 2 \, x e \log \relax (5) + 6 \, x e - 4 \, x e^{\left (x + 1\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 26, normalized size = 1.08
method | result | size |
norman | \(\left (3 \ln \relax (5)+9\right ) x -6 \,{\mathrm e}^{x} x +\frac {9 x^{2} {\mathrm e}^{-1} {\mathrm e}^{x}}{2}\) | \(26\) |
risch | \(3 x \ln \relax (5)+9 x +\frac {\left (-12 x \,{\mathrm e}+9 x^{2}\right ) {\mathrm e}^{x -1}}{2}\) | \(27\) |
default | \(\frac {{\mathrm e}^{-1} \left (9 \,{\mathrm e}^{x} x^{2}-12 \,{\mathrm e} \,{\mathrm e}^{x}-12 \,{\mathrm e} \left ({\mathrm e}^{x} x -{\mathrm e}^{x}\right )+6 x \,{\mathrm e} \ln \relax (5)+18 x \,{\mathrm e}\right )}{2}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 31, normalized size = 1.29 \begin {gather*} \frac {3}{2} \, {\left (2 \, x e \log \relax (5) + 6 \, x e + {\left (3 \, x^{2} - 4 \, x e\right )} e^{x}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 23, normalized size = 0.96 \begin {gather*} 9\,x+3\,x\,\ln \relax (5)-6\,x\,{\mathrm {e}}^x+\frac {9\,x^2\,{\mathrm {e}}^{-1}\,{\mathrm {e}}^x}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 27, normalized size = 1.12 \begin {gather*} x \left (3 \log {\relax (5 )} + 9\right ) + \frac {\left (9 x^{2} - 12 e x\right ) e^{x}}{2 e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________