Optimal. Leaf size=25 \[ 28+e^{e^{\frac {2 x}{e^2}}}+\frac {e^x+x}{3+e^4} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 31, normalized size of antiderivative = 1.24, number of steps used = 5, number of rules used = 3, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {12, 2194, 2282} \begin {gather*} \frac {x}{3+e^4}+e^{e^{\frac {2 x}{e^2}}}+\frac {e^x}{3+e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (e^2+e^{2+x}+e^{e^{\frac {2 x}{e^2}}+\frac {2 x}{e^2}} \left (6+2 e^4\right )\right ) \, dx}{e^2 \left (3+e^4\right )}\\ &=\frac {x}{3+e^4}+\frac {2 \int e^{e^{\frac {2 x}{e^2}}+\frac {2 x}{e^2}} \, dx}{e^2}+\frac {\int e^{2+x} \, dx}{e^2 \left (3+e^4\right )}\\ &=\frac {e^x}{3+e^4}+\frac {x}{3+e^4}+\operatorname {Subst}\left (\int e^x \, dx,x,e^{\frac {2 x}{e^2}}\right )\\ &=e^{e^{\frac {2 x}{e^2}}}+\frac {e^x}{3+e^4}+\frac {x}{3+e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 29, normalized size = 1.16 \begin {gather*} \frac {e^x+e^{e^{\frac {2 x}{e^2}}} \left (3+e^4\right )+x}{3+e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.94, size = 60, normalized size = 2.40 \begin {gather*} \frac {{\left ({\left (e^{6} + 3 \, e^{2}\right )} e^{\left ({\left (2 \, x + e^{\left (2 \, x e^{\left (-2\right )} + 2\right )}\right )} e^{\left (-2\right )}\right )} + x e^{\left (2 \, x e^{\left (-2\right )} + 2\right )} + e^{\left (2 \, x e^{\left (-2\right )} + x + 2\right )}\right )} e^{\left (-2 \, x e^{\left (-2\right )}\right )}}{e^{6} + 3 \, e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 33, normalized size = 1.32 \begin {gather*} \frac {x e^{2} + {\left (e^{4} + 3\right )} e^{\left (e^{\left (2 \, x e^{\left (-2\right )}\right )} + 2\right )} + e^{\left (x + 2\right )}}{e^{6} + 3 \, e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 28, normalized size = 1.12
method | result | size |
norman | \(\frac {x}{{\mathrm e}^{4}+3}+\frac {{\mathrm e}^{x}}{{\mathrm e}^{4}+3}+{\mathrm e}^{{\mathrm e}^{2 x \,{\mathrm e}^{-2}}}\) | \(28\) |
default | \(\frac {{\mathrm e}^{2} {\mathrm e}^{x}+\frac {\left (2 \,{\mathrm e}^{4}+6\right ) {\mathrm e}^{{\mathrm e}^{2 x \,{\mathrm e}^{-2}}} {\mathrm e}^{2}}{2}+{\mathrm e}^{2} x}{{\mathrm e}^{2} {\mathrm e}^{4}+3 \,{\mathrm e}^{2}}\) | \(43\) |
risch | \(\frac {{\mathrm e}^{2} x}{{\mathrm e}^{6}+3 \,{\mathrm e}^{2}}+\frac {{\mathrm e}^{2+x}}{{\mathrm e}^{6}+3 \,{\mathrm e}^{2}}+\frac {{\mathrm e}^{2+{\mathrm e}^{2 x \,{\mathrm e}^{-2}}} {\mathrm e}^{4}}{{\mathrm e}^{6}+3 \,{\mathrm e}^{2}}+\frac {3 \,{\mathrm e}^{2+{\mathrm e}^{2 x \,{\mathrm e}^{-2}}}}{{\mathrm e}^{6}+3 \,{\mathrm e}^{2}}\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 33, normalized size = 1.32 \begin {gather*} \frac {x e^{2} + {\left (e^{4} + 3\right )} e^{\left (e^{\left (2 \, x e^{\left (-2\right )}\right )} + 2\right )} + e^{\left (x + 2\right )}}{e^{6} + 3 \, e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.77, size = 25, normalized size = 1.00 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{2\,x\,{\mathrm {e}}^{-2}}}+\frac {{\mathrm {e}}^x}{{\mathrm {e}}^4+3}+\frac {x}{{\mathrm {e}}^4+3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.33, size = 48, normalized size = 1.92 \begin {gather*} \frac {x e^{2} + e^{2} e^{x} + 3 e^{2} e^{e^{\frac {2 x}{e^{2}}}} + e^{6} e^{e^{\frac {2 x}{e^{2}}}}}{3 e^{2} + e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________