Optimal. Leaf size=15 \[ 4 \left (2+\frac {e^{64 x^3}}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 12, normalized size of antiderivative = 0.80, number of steps used = 1, number of rules used = 1, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {2288} \begin {gather*} \frac {4 e^{64 x^3}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {4 e^{64 x^3}}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 12, normalized size = 0.80 \begin {gather*} \frac {4 e^{64 x^3}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.04, size = 11, normalized size = 0.73 \begin {gather*} \frac {4 \, e^{\left (64 \, x^{3}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 11, normalized size = 0.73 \begin {gather*} \frac {4 \, e^{\left (64 \, x^{3}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 12, normalized size = 0.80
method | result | size |
gosper | \(\frac {4 \,{\mathrm e}^{64 x^{3}}}{x}\) | \(12\) |
norman | \(\frac {4 \,{\mathrm e}^{64 x^{3}}}{x}\) | \(12\) |
risch | \(\frac {4 \,{\mathrm e}^{64 x^{3}}}{x}\) | \(12\) |
meijerg | \(-16 \left (-1\right )^{\frac {1}{3}} \left (\frac {x^{2} \left (-1\right )^{\frac {2}{3}} \Gamma \left (\frac {2}{3}\right )}{\left (-x^{3}\right )^{\frac {2}{3}}}-\frac {\left (-1\right )^{\frac {2}{3}} x^{2} \Gamma \left (\frac {2}{3}, -64 x^{3}\right )}{\left (-x^{3}\right )^{\frac {2}{3}}}\right )-\frac {16 \left (-1\right )^{\frac {1}{3}} \left (-\frac {3 x^{2} \left (-1\right )^{\frac {2}{3}} \Gamma \left (\frac {2}{3}\right )}{\left (-x^{3}\right )^{\frac {2}{3}}}+\frac {3 \left (-1\right )^{\frac {2}{3}} {\mathrm e}^{64 x^{3}}}{4 x}+\frac {3 \left (-1\right )^{\frac {2}{3}} x^{2} \Gamma \left (\frac {2}{3}, -64 x^{3}\right )}{\left (-x^{3}\right )^{\frac {2}{3}}}\right )}{3}\) | \(105\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 39, normalized size = 2.60 \begin {gather*} -\frac {16 \, x^{2} \Gamma \left (\frac {2}{3}, -64 \, x^{3}\right )}{\left (-x^{3}\right )^{\frac {2}{3}}} + \frac {16 \, \left (-x^{3}\right )^{\frac {1}{3}} \Gamma \left (-\frac {1}{3}, -64 \, x^{3}\right )}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 11, normalized size = 0.73 \begin {gather*} \frac {4\,{\mathrm {e}}^{64\,x^3}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 8, normalized size = 0.53 \begin {gather*} \frac {4 e^{64 x^{3}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________