Optimal. Leaf size=23 \[ \left (8 x+9 e^x x\right ) \left (4+\left (x-\log \left (x^2\right )\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.35, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (32-32 x+24 x^2+e^x \left (36+27 x^2+9 x^3\right )+\left (32-32 x+e^x \left (36-36 x-18 x^2\right )\right ) \log \left (x^2\right )+\left (8+e^x (9+9 x)\right ) \log ^2\left (x^2\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=32 x-16 x^2+8 x^3+\int e^x \left (36+27 x^2+9 x^3\right ) \, dx+\int \left (32-32 x+e^x \left (36-36 x-18 x^2\right )\right ) \log \left (x^2\right ) \, dx+\int \left (8+e^x (9+9 x)\right ) \log ^2\left (x^2\right ) \, dx\\ &=32 x-16 x^2+8 x^3+36 e^x \log \left (x^2\right )+32 x \log \left (x^2\right )-16 x^2 \log \left (x^2\right )-18 e^x x^2 \log \left (x^2\right )+\int \left (36 e^x+27 e^x x^2+9 e^x x^3\right ) \, dx-\int \left (-32 (-2+x)-\frac {36 e^x \left (-2+x^2\right )}{x}\right ) \, dx+\int \left (8 \log ^2\left (x^2\right )+9 e^x (1+x) \log ^2\left (x^2\right )\right ) \, dx\\ &=16 (2-x)^2+32 x-16 x^2+8 x^3+36 e^x \log \left (x^2\right )+32 x \log \left (x^2\right )-16 x^2 \log \left (x^2\right )-18 e^x x^2 \log \left (x^2\right )+8 \int \log ^2\left (x^2\right ) \, dx+9 \int e^x x^3 \, dx+9 \int e^x (1+x) \log ^2\left (x^2\right ) \, dx+27 \int e^x x^2 \, dx+36 \int e^x \, dx+36 \int \frac {e^x \left (-2+x^2\right )}{x} \, dx\\ &=36 e^x+16 (2-x)^2+32 x-16 x^2+27 e^x x^2+8 x^3+9 e^x x^3+36 e^x \log \left (x^2\right )+32 x \log \left (x^2\right )-16 x^2 \log \left (x^2\right )-18 e^x x^2 \log \left (x^2\right )+8 x \log ^2\left (x^2\right )+9 \int \left (e^x \log ^2\left (x^2\right )+e^x x \log ^2\left (x^2\right )\right ) \, dx-27 \int e^x x^2 \, dx-32 \int \log \left (x^2\right ) \, dx+36 \int \left (-\frac {2 e^x}{x}+e^x x\right ) \, dx-54 \int e^x x \, dx\\ &=36 e^x+16 (2-x)^2+96 x-54 e^x x-16 x^2+8 x^3+9 e^x x^3+36 e^x \log \left (x^2\right )-16 x^2 \log \left (x^2\right )-18 e^x x^2 \log \left (x^2\right )+8 x \log ^2\left (x^2\right )+9 \int e^x \log ^2\left (x^2\right ) \, dx+9 \int e^x x \log ^2\left (x^2\right ) \, dx+36 \int e^x x \, dx+54 \int e^x \, dx+54 \int e^x x \, dx-72 \int \frac {e^x}{x} \, dx\\ &=90 e^x+16 (2-x)^2+96 x+36 e^x x-16 x^2+8 x^3+9 e^x x^3-72 \text {Ei}(x)+36 e^x \log \left (x^2\right )-16 x^2 \log \left (x^2\right )-18 e^x x^2 \log \left (x^2\right )+8 x \log ^2\left (x^2\right )+9 \int e^x \log ^2\left (x^2\right ) \, dx+9 \int e^x x \log ^2\left (x^2\right ) \, dx-36 \int e^x \, dx-54 \int e^x \, dx\\ &=16 (2-x)^2+96 x+36 e^x x-16 x^2+8 x^3+9 e^x x^3-72 \text {Ei}(x)+36 e^x \log \left (x^2\right )-16 x^2 \log \left (x^2\right )-18 e^x x^2 \log \left (x^2\right )+8 x \log ^2\left (x^2\right )+9 \int e^x \log ^2\left (x^2\right ) \, dx+9 \int e^x x \log ^2\left (x^2\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 27, normalized size = 1.17 \begin {gather*} \left (8+9 e^x\right ) x \left (4+x^2-2 x \log \left (x^2\right )+\log ^2\left (x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 55, normalized size = 2.39 \begin {gather*} 8 \, x^{3} + {\left (9 \, x e^{x} + 8 \, x\right )} \log \left (x^{2}\right )^{2} + 9 \, {\left (x^{3} + 4 \, x\right )} e^{x} - 2 \, {\left (9 \, x^{2} e^{x} + 8 \, x^{2}\right )} \log \left (x^{2}\right ) + 32 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 82, normalized size = 3.57 \begin {gather*} 8 \, x^{3} + {\left (9 \, x e^{x} + 8 \, x\right )} \log \left (x^{2}\right )^{2} + 9 \, {\left (x^{3} + 4\right )} e^{x} + 36 \, x e^{x} - 2 \, {\left (8 \, x^{2} + 9 \, {\left (x^{2} - 2\right )} e^{x} - 16 \, x\right )} \log \left (x^{2}\right ) - 32 \, x \log \left (x^{2}\right ) - 36 \, e^{x} \log \left (x^{2}\right ) + 32 \, x - 36 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.20, size = 400, normalized size = 17.39
method | result | size |
risch | \(\left (36 \,{\mathrm e}^{x} x +32 x \right ) \ln \relax (x )^{2}+\left (-16 i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-4 i\right ) x -18 i \left (\pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi x \mathrm {csgn}\left (i x^{2}\right )^{3}-4 i\right ) {\mathrm e}^{x}\right ) \ln \relax (x )+18 i {\mathrm e}^{x} \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+16 i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+16 i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}-32 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (\mathrm {csgn}\left (i x \right )^{2}-2 \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )+\mathrm {csgn}\left (i x^{2}\right )^{2}\right ) \left (8 x^{2}-16 x +9 \,{\mathrm e}^{x} x^{2}-18 \,{\mathrm e}^{x}\right )-36 i {\mathrm e}^{x} \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\frac {\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \left (\mathrm {csgn}\left (i x \right )^{2}-2 \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )+\mathrm {csgn}\left (i x^{2}\right )^{2}\right )^{2} \left (8 x +9 \,{\mathrm e}^{x} x \right )}{4}+\left (-32 x^{2}+64 x +\left (-36 x^{2}+72\right ) {\mathrm e}^{x}\right ) \ln \relax (x )+18 i {\mathrm e}^{x} \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+36 \,{\mathrm e}^{x} x -36 \,{\mathrm e}^{x}+\left (9 x^{3}+36\right ) {\mathrm e}^{x}+8 x^{3}+32 x\) | \(400\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 54, normalized size = 2.35 \begin {gather*} 8 \, x^{3} - 32 \, x^{2} \log \relax (x) + 32 \, x \log \relax (x)^{2} + 9 \, {\left (x^{3} + 4\right )} e^{x} - 36 \, {\left (x^{2} \log \relax (x) - x \log \relax (x)^{2} - x + 1\right )} e^{x} + 32 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.76, size = 26, normalized size = 1.13 \begin {gather*} x\,\left (9\,{\mathrm {e}}^x+8\right )\,\left (x^2-2\,x\,\ln \left (x^2\right )+{\ln \left (x^2\right )}^2+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.45, size = 60, normalized size = 2.61 \begin {gather*} 8 x^{3} - 16 x^{2} \log {\left (x^{2} \right )} + 8 x \log {\left (x^{2} \right )}^{2} + 32 x + \left (9 x^{3} - 18 x^{2} \log {\left (x^{2} \right )} + 9 x \log {\left (x^{2} \right )}^{2} + 36 x\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________