Optimal. Leaf size=24 \[ \frac {25 x^2}{2 (2-x) \left (-4-\frac {x}{e^2}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 43, normalized size of antiderivative = 1.79, number of steps used = 4, number of rules used = 4, integrand size = 71, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {1680, 12, 1814, 8} \begin {gather*} -\frac {25 e^2 \left (\left (1-2 e^2\right ) x+4 e^2\right )}{-x^2+2 \left (1-2 e^2\right ) x+8 e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 12
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {25 \left (-e^2 \left (1-2 e^2\right ) \left (1+2 e^2\right )^2-2 e^2 \left (1+4 e^4\right ) x-e^2 \left (1-2 e^2\right ) x^2\right )}{\left (1+4 e^2+4 e^4-x^2\right )^2} \, dx,x,\frac {1}{4} \left (-4+8 e^2\right )+x\right )\\ &=25 \operatorname {Subst}\left (\int \frac {-e^2 \left (1-2 e^2\right ) \left (1+2 e^2\right )^2-2 e^2 \left (1+4 e^4\right ) x-e^2 \left (1-2 e^2\right ) x^2}{\left (1+4 e^2+4 e^4-x^2\right )^2} \, dx,x,\frac {1}{4} \left (-4+8 e^2\right )+x\right )\\ &=-\frac {25 e^2 \left (4 e^2+\left (1-2 e^2\right ) x\right )}{8 e^2+2 \left (1-2 e^2\right ) x-x^2}-\frac {25 \operatorname {Subst}\left (\int 0 \, dx,x,\frac {1}{4} \left (-4+8 e^2\right )+x\right )}{2 \left (1+2 e^2\right )^2}\\ &=-\frac {25 e^2 \left (4 e^2+\left (1-2 e^2\right ) x\right )}{8 e^2+2 \left (1-2 e^2\right ) x-x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 29, normalized size = 1.21 \begin {gather*} \frac {25 e^2 \left (-2 e^2 (-2+x)+x\right )}{(-2+x) \left (4 e^2+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 31, normalized size = 1.29 \begin {gather*} -\frac {25 \, {\left (2 \, {\left (x - 2\right )} e^{4} - x e^{2}\right )}}{x^{2} + 4 \, {\left (x - 2\right )} e^{2} - 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 35, normalized size = 1.46
method | result | size |
norman | \(\frac {\left (-50 \,{\mathrm e}^{4}+25 \,{\mathrm e}^{2}\right ) x +100 \,{\mathrm e}^{4}}{\left (x -2\right ) \left (x +4 \,{\mathrm e}^{2}\right )}\) | \(35\) |
gosper | \(-\frac {25 \left (2 \,{\mathrm e}^{2} x -4 \,{\mathrm e}^{2}-x \right ) {\mathrm e}^{2}}{4 \,{\mathrm e}^{2} x +x^{2}-8 \,{\mathrm e}^{2}-2 x}\) | \(36\) |
risch | \(\frac {\left (-\frac {25 \,{\mathrm e}^{4}}{2}+\frac {25 \,{\mathrm e}^{2}}{4}\right ) x +25 \,{\mathrm e}^{4}}{{\mathrm e}^{2} x +\frac {x^{2}}{4}-2 \,{\mathrm e}^{2}-\frac {x}{2}}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 37, normalized size = 1.54 \begin {gather*} -\frac {25 \, {\left (x {\left (2 \, e^{4} - e^{2}\right )} - 4 \, e^{4}\right )}}{x^{2} + 2 \, x {\left (2 \, e^{2} - 1\right )} - 8 \, e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 28, normalized size = 1.17 \begin {gather*} \frac {25\,{\mathrm {e}}^2\,\left (x+4\,{\mathrm {e}}^2-2\,x\,{\mathrm {e}}^2\right )}{\left (x+4\,{\mathrm {e}}^2\right )\,\left (x-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.59, size = 34, normalized size = 1.42 \begin {gather*} - \frac {x \left (- 25 e^{2} + 50 e^{4}\right ) - 100 e^{4}}{x^{2} + x \left (-2 + 4 e^{2}\right ) - 8 e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________