Optimal. Leaf size=21 \[ \left (2+\frac {1}{2 e^2}\right ) e^{\frac {e^{x^2}}{2}} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 24, normalized size of antiderivative = 1.14, number of steps used = 5, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {6, 12, 6715, 2282, 2194} \begin {gather*} \frac {1}{2} \left (1+4 e^2\right ) e^{\frac {e^{x^2}}{2}-2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2194
Rule 2282
Rule 6715
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1}{2} e^{-2+\frac {e^{x^2}}{2}+x^2} \left (1+4 e^2\right ) x \, dx\\ &=\frac {1}{2} \left (1+4 e^2\right ) \int e^{-2+\frac {e^{x^2}}{2}+x^2} x \, dx\\ &=\frac {1}{4} \left (1+4 e^2\right ) \operatorname {Subst}\left (\int e^{-2+\frac {e^x}{2}+x} \, dx,x,x^2\right )\\ &=\frac {1}{4} \left (1+4 e^2\right ) \operatorname {Subst}\left (\int e^{-2+\frac {x}{2}} \, dx,x,e^{x^2}\right )\\ &=\frac {1}{2} e^{-2+\frac {e^{x^2}}{2}} \left (1+4 e^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 24, normalized size = 1.14 \begin {gather*} \frac {1}{2} e^{-2+\frac {e^{x^2}}{2}} \left (1+4 e^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.08, size = 17, normalized size = 0.81 \begin {gather*} \frac {1}{2} \, {\left (4 \, e^{2} + 1\right )} e^{\left (\frac {1}{2} \, e^{\left (x^{2}\right )} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 23, normalized size = 1.10 \begin {gather*} \frac {1}{2} \, {\left (e^{\left (\frac {1}{2} \, e^{\left (x^{2}\right )}\right )} + 4 \, e^{\left (\frac {1}{2} \, e^{\left (x^{2}\right )} + 2\right )}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 22, normalized size = 1.05
method | result | size |
norman | \(\frac {\left (4 \,{\mathrm e}^{2}+1\right ) {\mathrm e}^{-2} {\mathrm e}^{\frac {{\mathrm e}^{x^{2}}}{2}}}{2}\) | \(22\) |
risch | \(2 \,{\mathrm e}^{-2+\frac {{\mathrm e}^{x^{2}}}{2}} {\mathrm e}^{2}+\frac {{\mathrm e}^{-2+\frac {{\mathrm e}^{x^{2}}}{2}}}{2}\) | \(26\) |
default | \(\frac {{\mathrm e}^{-2} \left ({\mathrm e}^{\frac {{\mathrm e}^{x^{2}}}{2}}+4 \,{\mathrm e}^{2} {\mathrm e}^{\frac {{\mathrm e}^{x^{2}}}{2}}\right )}{2}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 21, normalized size = 1.00 \begin {gather*} 2 \, e^{\left (\frac {1}{2} \, e^{\left (x^{2}\right )}\right )} + \frac {1}{2} \, e^{\left (\frac {1}{2} \, e^{\left (x^{2}\right )} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.01, size = 16, normalized size = 0.76 \begin {gather*} {\mathrm {e}}^{\frac {{\mathrm {e}}^{x^2}}{2}-2}\,\left (2\,{\mathrm {e}}^2+\frac {1}{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 19, normalized size = 0.90 \begin {gather*} \frac {\left (1 + 4 e^{2}\right ) e^{\frac {e^{x^{2}}}{2}}}{2 e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________