Optimal. Leaf size=22 \[ 5+4 \left (x+\frac {e^{-x} \log \left (\frac {\log (x)}{x}\right )}{x^5}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.52, antiderivative size = 21, normalized size of antiderivative = 0.95, number of steps used = 3, number of rules used = 2, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.047, Rules used = {6742, 2288} \begin {gather*} \frac {4 e^{-x} \log \left (\frac {\log (x)}{x}\right )}{x^5}+4 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (4-\frac {4 e^{-x} \left (-1+\log (x)+5 \log (x) \log \left (\frac {\log (x)}{x}\right )+x \log (x) \log \left (\frac {\log (x)}{x}\right )\right )}{x^6 \log (x)}\right ) \, dx\\ &=4 x-4 \int \frac {e^{-x} \left (-1+\log (x)+5 \log (x) \log \left (\frac {\log (x)}{x}\right )+x \log (x) \log \left (\frac {\log (x)}{x}\right )\right )}{x^6 \log (x)} \, dx\\ &=4 x+\frac {4 e^{-x} \log \left (\frac {\log (x)}{x}\right )}{x^5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 21, normalized size = 0.95 \begin {gather*} 4 x+\frac {4 e^{-x} \log \left (\frac {\log (x)}{x}\right )}{x^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 23, normalized size = 1.05 \begin {gather*} \frac {4 \, {\left (x^{6} e^{x} + \log \left (\frac {\log \relax (x)}{x}\right )\right )} e^{\left (-x\right )}}{x^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 25, normalized size = 1.14 \begin {gather*} \frac {4 \, {\left (x^{6} - e^{\left (-x\right )} \log \relax (x) + e^{\left (-x\right )} \log \left (\log \relax (x)\right )\right )}}{x^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.08, size = 119, normalized size = 5.41
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{-x} \ln \left (\ln \relax (x )\right )}{x^{5}}-\frac {2 \left (-2 x^{6} {\mathrm e}^{x}+i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )}{x}\right )-i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )}{x}\right )^{2}-i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )}{x}\right )^{2}+i \pi \mathrm {csgn}\left (\frac {i \ln \relax (x )}{x}\right )^{3}+2 \ln \relax (x )\right ) {\mathrm e}^{-x}}{x^{5}}\) | \(119\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 4 \, x - \frac {4 \, {\left (e^{\left (-x\right )} \log \relax (x) - e^{\left (-x\right )} \log \left (\log \relax (x)\right )\right )}}{x^{5}} + 4 \, \Gamma \left (-5, x\right ) + 4 \, \int \frac {e^{\left (-x\right )}}{x^{6}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {{\mathrm {e}}^{-x}\,\left (\ln \relax (x)\,\left (4\,x^6\,{\mathrm {e}}^x-4\right )-\ln \left (\frac {\ln \relax (x)}{x}\right )\,\ln \relax (x)\,\left (4\,x+20\right )+4\right )}{x^6\,\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 17, normalized size = 0.77 \begin {gather*} 4 x + \frac {4 e^{- x} \log {\left (\frac {\log {\relax (x )}}{x} \right )}}{x^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________