Optimal. Leaf size=19 \[ 3-2 \left (2+e^{e^x}-\frac {1}{2 \log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.26, antiderivative size = 12, normalized size of antiderivative = 0.63, number of steps used = 6, number of rules used = 5, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {6742, 2282, 2194, 2302, 30} \begin {gather*} \frac {1}{\log (x)}-2 e^{e^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 2194
Rule 2282
Rule 2302
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-2 e^{e^x+x}-\frac {1}{x \log ^2(x)}\right ) \, dx\\ &=-\left (2 \int e^{e^x+x} \, dx\right )-\int \frac {1}{x \log ^2(x)} \, dx\\ &=-\left (2 \operatorname {Subst}\left (\int e^x \, dx,x,e^x\right )\right )-\operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (x)\right )\\ &=-2 e^{e^x}+\frac {1}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 12, normalized size = 0.63 \begin {gather*} -2 e^{e^x}+\frac {1}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.68, size = 24, normalized size = 1.26 \begin {gather*} -\frac {{\left (2 \, e^{\left (x + e^{x}\right )} \log \relax (x) - e^{x}\right )} e^{\left (-x\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 24, normalized size = 1.26 \begin {gather*} -\frac {{\left (2 \, e^{\left (x + e^{x}\right )} \log \relax (x) - e^{x}\right )} e^{\left (-x\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 11, normalized size = 0.58
method | result | size |
default | \(\frac {1}{\ln \relax (x )}-2 \,{\mathrm e}^{{\mathrm e}^{x}}\) | \(11\) |
risch | \(\frac {1}{\ln \relax (x )}-2 \,{\mathrm e}^{{\mathrm e}^{x}}\) | \(11\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 10, normalized size = 0.53 \begin {gather*} \frac {1}{\log \relax (x)} - 2 \, e^{\left (e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.48, size = 10, normalized size = 0.53 \begin {gather*} \frac {1}{\ln \relax (x)}-2\,{\mathrm {e}}^{{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 10, normalized size = 0.53 \begin {gather*} - 2 e^{e^{x}} + \frac {1}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________