Optimal. Leaf size=29 \[ \frac {-x+\frac {e^{-x-8 x^2} x^2}{\log ^4(9)}}{5+x} \]
________________________________________________________________________________________
Rubi [B] time = 1.85, antiderivative size = 64, normalized size of antiderivative = 2.21, number of steps used = 42, number of rules used = 8, integrand size = 60, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {12, 27, 6742, 2242, 2234, 2205, 2240, 2241} \begin {gather*} \frac {e^{-8 x^2-x} x}{\log ^4(9)}-\frac {5 e^{-8 x^2-x}}{\log ^4(9)}+\frac {25 e^{-8 x^2-x}}{(x+5) \log ^4(9)}+\frac {5}{x+5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 2205
Rule 2234
Rule 2240
Rule 2241
Rule 2242
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{-x-8 x^2} \left (10 x-4 x^2-81 x^3-16 x^4-5 e^{x+8 x^2} \log ^4(9)\right )}{25+10 x+x^2} \, dx}{\log ^4(9)}\\ &=\frac {\int \frac {e^{-x-8 x^2} \left (10 x-4 x^2-81 x^3-16 x^4-5 e^{x+8 x^2} \log ^4(9)\right )}{(5+x)^2} \, dx}{\log ^4(9)}\\ &=\frac {\int \left (\frac {10 e^{-x-8 x^2} x}{(5+x)^2}-\frac {4 e^{-x-8 x^2} x^2}{(5+x)^2}-\frac {81 e^{-x-8 x^2} x^3}{(5+x)^2}-\frac {16 e^{-x-8 x^2} x^4}{(5+x)^2}-\frac {5 \log ^4(9)}{(5+x)^2}\right ) \, dx}{\log ^4(9)}\\ &=\frac {5}{5+x}-\frac {4 \int \frac {e^{-x-8 x^2} x^2}{(5+x)^2} \, dx}{\log ^4(9)}+\frac {10 \int \frac {e^{-x-8 x^2} x}{(5+x)^2} \, dx}{\log ^4(9)}-\frac {16 \int \frac {e^{-x-8 x^2} x^4}{(5+x)^2} \, dx}{\log ^4(9)}-\frac {81 \int \frac {e^{-x-8 x^2} x^3}{(5+x)^2} \, dx}{\log ^4(9)}\\ &=\frac {5}{5+x}-\frac {4 \int \left (e^{-x-8 x^2}+\frac {25 e^{-x-8 x^2}}{(5+x)^2}-\frac {10 e^{-x-8 x^2}}{5+x}\right ) \, dx}{\log ^4(9)}+\frac {10 \int \left (-\frac {5 e^{-x-8 x^2}}{(5+x)^2}+\frac {e^{-x-8 x^2}}{5+x}\right ) \, dx}{\log ^4(9)}-\frac {16 \int \left (75 e^{-x-8 x^2}-10 e^{-x-8 x^2} x+e^{-x-8 x^2} x^2+\frac {625 e^{-x-8 x^2}}{(5+x)^2}-\frac {500 e^{-x-8 x^2}}{5+x}\right ) \, dx}{\log ^4(9)}-\frac {81 \int \left (-10 e^{-x-8 x^2}+e^{-x-8 x^2} x-\frac {125 e^{-x-8 x^2}}{(5+x)^2}+\frac {75 e^{-x-8 x^2}}{5+x}\right ) \, dx}{\log ^4(9)}\\ &=\frac {5}{5+x}-\frac {4 \int e^{-x-8 x^2} \, dx}{\log ^4(9)}+\frac {10 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {16 \int e^{-x-8 x^2} x^2 \, dx}{\log ^4(9)}+\frac {40 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {50 \int \frac {e^{-x-8 x^2}}{(5+x)^2} \, dx}{\log ^4(9)}-\frac {81 \int e^{-x-8 x^2} x \, dx}{\log ^4(9)}-\frac {100 \int \frac {e^{-x-8 x^2}}{(5+x)^2} \, dx}{\log ^4(9)}+\frac {160 \int e^{-x-8 x^2} x \, dx}{\log ^4(9)}+\frac {810 \int e^{-x-8 x^2} \, dx}{\log ^4(9)}-\frac {1200 \int e^{-x-8 x^2} \, dx}{\log ^4(9)}-\frac {6075 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}+\frac {8000 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {10000 \int \frac {e^{-x-8 x^2}}{(5+x)^2} \, dx}{\log ^4(9)}+\frac {10125 \int \frac {e^{-x-8 x^2}}{(5+x)^2} \, dx}{\log ^4(9)}\\ &=\frac {5}{5+x}-\frac {79 e^{-x-8 x^2}}{16 \log ^4(9)}+\frac {e^{-x-8 x^2} x}{\log ^4(9)}+\frac {25 e^{-x-8 x^2}}{(5+x) \log ^4(9)}-\frac {\int e^{-x-8 x^2} \, dx}{\log ^4(9)}+\frac {\int e^{-x-8 x^2} x \, dx}{\log ^4(9)}+\frac {81 \int e^{-x-8 x^2} \, dx}{16 \log ^4(9)}-\frac {10 \int e^{-x-8 x^2} \, dx}{\log ^4(9)}+\frac {10 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}+\frac {40 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}+\frac {800 \int e^{-x-8 x^2} \, dx}{\log ^4(9)}+\frac {1600 \int e^{-x-8 x^2} \, dx}{\log ^4(9)}-\frac {3950 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {6075 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {7900 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}+\frac {8000 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}+\frac {160000 \int e^{-x-8 x^2} \, dx}{\log ^4(9)}-\frac {162000 \int e^{-x-8 x^2} \, dx}{\log ^4(9)}-\frac {790000 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}+\frac {799875 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {\left (4 \sqrt [32]{e}\right ) \int e^{-\frac {1}{32} (-1-16 x)^2} \, dx}{\log ^4(9)}+\frac {\left (810 \sqrt [32]{e}\right ) \int e^{-\frac {1}{32} (-1-16 x)^2} \, dx}{\log ^4(9)}-\frac {\left (1200 \sqrt [32]{e}\right ) \int e^{-\frac {1}{32} (-1-16 x)^2} \, dx}{\log ^4(9)}\\ &=\frac {5}{5+x}-\frac {5 e^{-x-8 x^2}}{\log ^4(9)}+\frac {e^{-x-8 x^2} x}{\log ^4(9)}+\frac {25 e^{-x-8 x^2}}{(5+x) \log ^4(9)}+\frac {403 \sqrt [32]{e} \sqrt {\frac {\pi }{2}} \text {erf}\left (\frac {1+16 x}{4 \sqrt {2}}\right )}{2 \log ^4(9)}-\frac {150 \sqrt [32]{e} \sqrt {2 \pi } \text {erf}\left (\frac {1+16 x}{4 \sqrt {2}}\right )}{\log ^4(9)}-\frac {\int e^{-x-8 x^2} \, dx}{16 \log ^4(9)}+\frac {10 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}+\frac {40 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {3950 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {6075 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {7900 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}+\frac {8000 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {790000 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}+\frac {799875 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {\sqrt [32]{e} \int e^{-\frac {1}{32} (-1-16 x)^2} \, dx}{\log ^4(9)}+\frac {\left (81 \sqrt [32]{e}\right ) \int e^{-\frac {1}{32} (-1-16 x)^2} \, dx}{16 \log ^4(9)}-\frac {\left (10 \sqrt [32]{e}\right ) \int e^{-\frac {1}{32} (-1-16 x)^2} \, dx}{\log ^4(9)}+\frac {\left (800 \sqrt [32]{e}\right ) \int e^{-\frac {1}{32} (-1-16 x)^2} \, dx}{\log ^4(9)}+\frac {\left (1600 \sqrt [32]{e}\right ) \int e^{-\frac {1}{32} (-1-16 x)^2} \, dx}{\log ^4(9)}+\frac {\left (160000 \sqrt [32]{e}\right ) \int e^{-\frac {1}{32} (-1-16 x)^2} \, dx}{\log ^4(9)}-\frac {\left (162000 \sqrt [32]{e}\right ) \int e^{-\frac {1}{32} (-1-16 x)^2} \, dx}{\log ^4(9)}\\ &=\frac {5}{5+x}-\frac {5 e^{-x-8 x^2}}{\log ^4(9)}+\frac {e^{-x-8 x^2} x}{\log ^4(9)}+\frac {25 e^{-x-8 x^2}}{(5+x) \log ^4(9)}+\frac {12801 \sqrt [32]{e} \sqrt {\frac {\pi }{2}} \text {erf}\left (\frac {1+16 x}{4 \sqrt {2}}\right )}{64 \log ^4(9)}-\frac {100 \sqrt [32]{e} \sqrt {2 \pi } \text {erf}\left (\frac {1+16 x}{4 \sqrt {2}}\right )}{\log ^4(9)}+\frac {10 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}+\frac {40 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {3950 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {6075 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {7900 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}+\frac {8000 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {790000 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}+\frac {799875 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {\sqrt [32]{e} \int e^{-\frac {1}{32} (-1-16 x)^2} \, dx}{16 \log ^4(9)}\\ &=\frac {5}{5+x}-\frac {5 e^{-x-8 x^2}}{\log ^4(9)}+\frac {e^{-x-8 x^2} x}{\log ^4(9)}+\frac {25 e^{-x-8 x^2}}{(5+x) \log ^4(9)}+\frac {10 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}+\frac {40 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {3950 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {6075 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {7900 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}+\frac {8000 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}-\frac {790000 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}+\frac {799875 \int \frac {e^{-x-8 x^2}}{5+x} \, dx}{\log ^4(9)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.88, size = 31, normalized size = 1.07 \begin {gather*} \frac {e^{-x (1+8 x)} x^2+5 \log ^4(9)}{(5+x) \log ^4(9)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 39, normalized size = 1.34 \begin {gather*} \frac {{\left (80 \, e^{\left (8 \, x^{2} + x\right )} \log \relax (3)^{4} + x^{2}\right )} e^{\left (-8 \, x^{2} - x\right )}}{16 \, {\left (x + 5\right )} \log \relax (3)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 32, normalized size = 1.10 \begin {gather*} \frac {80 \, \log \relax (3)^{4} + x^{2} e^{\left (-8 \, x^{2} - x\right )}}{16 \, {\left (x + 5\right )} \log \relax (3)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.29, size = 32, normalized size = 1.10
method | result | size |
risch | \(\frac {5}{5+x}+\frac {x^{2} {\mathrm e}^{-x \left (8 x +1\right )}}{16 \left (5+x \right ) \ln \relax (3)^{4}}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 37, normalized size = 1.28 \begin {gather*} \frac {\frac {80 \, \log \relax (3)^{4}}{x + 5} + \frac {x^{2} e^{\left (-8 \, x^{2} - x\right )}}{x + 5}}{16 \, \log \relax (3)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.27, size = 52, normalized size = 1.79 \begin {gather*} \frac {x^2-16\,x\,{\mathrm {e}}^{8\,x^2+x}\,{\ln \relax (3)}^4}{80\,{\mathrm {e}}^{8\,x^2+x}\,{\ln \relax (3)}^4+16\,x\,{\mathrm {e}}^{8\,x^2+x}\,{\ln \relax (3)}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 36, normalized size = 1.24 \begin {gather*} \frac {x^{2} e^{- 8 x^{2}}}{16 x e^{x} \log {\relax (3 )}^{4} + 80 e^{x} \log {\relax (3 )}^{4}} + \frac {5}{x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________