Optimal. Leaf size=33 \[ e^{e^{\frac {3 (-x+\log (x))}{x}}}+\frac {5}{2} \log \left (-x+\frac {e^4 x}{5}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5 x+\exp \left (e^{\frac {-3 x+3 \log (x)}{x}}+\frac {-3 x+3 \log (x)}{x}\right ) (6-6 \log (x))}{2 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {5 x+\exp \left (e^{\frac {-3 x+3 \log (x)}{x}}+\frac {-3 x+3 \log (x)}{x}\right ) (6-6 \log (x))}{x^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {5}{x}-6 e^{-3+\frac {x^{3/x}}{e^3}} x^{-2+\frac {3}{x}} (-1+\log (x))\right ) \, dx\\ &=\frac {5 \log (x)}{2}-3 \int e^{-3+\frac {x^{3/x}}{e^3}} x^{-2+\frac {3}{x}} (-1+\log (x)) \, dx\\ &=\frac {5 \log (x)}{2}-3 \int \left (-e^{-3+\frac {x^{3/x}}{e^3}} x^{-2+\frac {3}{x}}+e^{-3+\frac {x^{3/x}}{e^3}} x^{-2+\frac {3}{x}} \log (x)\right ) \, dx\\ &=\frac {5 \log (x)}{2}+3 \int e^{-3+\frac {x^{3/x}}{e^3}} x^{-2+\frac {3}{x}} \, dx-3 \int e^{-3+\frac {x^{3/x}}{e^3}} x^{-2+\frac {3}{x}} \log (x) \, dx\\ &=\frac {5 \log (x)}{2}+3 \int e^{-3+\frac {x^{3/x}}{e^3}} x^{-2+\frac {3}{x}} \, dx+3 \int \frac {\int e^{-3+\frac {x^{3/x}}{e^3}} x^{-2+\frac {3}{x}} \, dx}{x} \, dx-(3 \log (x)) \int e^{-3+\frac {x^{3/x}}{e^3}} x^{-2+\frac {3}{x}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 24, normalized size = 0.73 \begin {gather*} \frac {1}{2} \left (2 e^{\frac {x^{3/x}}{e^3}}+5 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 60, normalized size = 1.82 \begin {gather*} \frac {1}{2} \, {\left (5 \, e^{\left (-\frac {3 \, {\left (x - \log \relax (x)\right )}}{x}\right )} \log \relax (x) + 2 \, e^{\left (\frac {x e^{\left (-\frac {3 \, {\left (x - \log \relax (x)\right )}}{x}\right )} - 3 \, x + 3 \, \log \relax (x)}{x}\right )}\right )} e^{\left (\frac {3 \, {\left (x - \log \relax (x)\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 60, normalized size = 1.82 \begin {gather*} \frac {1}{2} \, {\left (5 \, e^{\left (-\frac {3 \, {\left (x - \log \relax (x)\right )}}{x}\right )} \log \relax (x) + 2 \, e^{\left (\frac {x e^{\left (-\frac {3 \, {\left (x - \log \relax (x)\right )}}{x}\right )} - 3 \, x + 3 \, \log \relax (x)}{x}\right )}\right )} e^{\left (\frac {3 \, {\left (x - \log \relax (x)\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 17, normalized size = 0.52
method | result | size |
risch | \(\frac {5 \ln \relax (x )}{2}+{\mathrm e}^{x^{\frac {3}{x}} {\mathrm e}^{-3}}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 16, normalized size = 0.48 \begin {gather*} e^{\left (e^{\left (\frac {3 \, \log \relax (x)}{x} - 3\right )}\right )} + \frac {5}{2} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.88, size = 16, normalized size = 0.48 \begin {gather*} {\mathrm {e}}^{x^{3/x}\,{\mathrm {e}}^{-3}}+\frac {5\,\ln \relax (x)}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.55, size = 19, normalized size = 0.58 \begin {gather*} e^{e^{\frac {- 3 x + 3 \log {\relax (x )}}{x}}} + \frac {5 \log {\relax (x )}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________