Optimal. Leaf size=28 \[ \frac {5 e^{e^{e^x}}}{(3-x) \left (e^x-x\right ) x} \]
________________________________________________________________________________________
Rubi [B] time = 0.28, antiderivative size = 100, normalized size of antiderivative = 3.57, number of steps used = 1, number of rules used = 1, integrand size = 124, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.008, Rules used = {2288} \begin {gather*} \frac {5 e^{e^{e^x}-x} \left (e^{2 x} \left (3 x-x^2\right )-e^x \left (3 x^2-x^3\right )\right )}{x^6-6 x^5+9 x^4-2 e^x \left (x^5-6 x^4+9 x^3\right )+e^{2 x} \left (x^4-6 x^3+9 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {5 e^{e^{e^x}-x} \left (e^{2 x} \left (3 x-x^2\right )-e^x \left (3 x^2-x^3\right )\right )}{9 x^4-6 x^5+x^6+e^{2 x} \left (9 x^2-6 x^3+x^4\right )-2 e^x \left (9 x^3-6 x^4+x^5\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 26, normalized size = 0.93 \begin {gather*} -\frac {5 e^{e^{e^x}}}{\left (e^x-x\right ) (-3+x) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 28, normalized size = 1.00 \begin {gather*} \frac {5 \, e^{\left (e^{\left (e^{x}\right )}\right )}}{x^{3} - 3 \, x^{2} - {\left (x^{2} - 3 \, x\right )} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {5 \, {\left (3 \, x^{2} - {\left (x^{2} - x - 3\right )} e^{x} + {\left ({\left (x^{2} - 3 \, x\right )} e^{\left (2 \, x\right )} - {\left (x^{3} - 3 \, x^{2}\right )} e^{x}\right )} e^{\left (e^{x}\right )} - 6 \, x\right )} e^{\left (e^{\left (e^{x}\right )}\right )}}{x^{6} - 6 \, x^{5} + 9 \, x^{4} + {\left (x^{4} - 6 \, x^{3} + 9 \, x^{2}\right )} e^{\left (2 \, x\right )} - 2 \, {\left (x^{5} - 6 \, x^{4} + 9 \, x^{3}\right )} e^{x}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 28, normalized size = 1.00
method | result | size |
risch | \(\frac {5 \,{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x}}}}{x \left (x^{2}-{\mathrm e}^{x} x -3 x +3 \,{\mathrm e}^{x}\right )}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 28, normalized size = 1.00 \begin {gather*} \frac {5 \, e^{\left (e^{\left (e^{x}\right )}\right )}}{x^{3} - 3 \, x^{2} - {\left (x^{2} - 3 \, x\right )} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.44, size = 30, normalized size = 1.07 \begin {gather*} -\frac {5\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^x}}}{x^2\,{\mathrm {e}}^x-3\,x\,{\mathrm {e}}^x+3\,x^2-x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 29, normalized size = 1.04 \begin {gather*} \frac {5 e^{e^{e^{x}}}}{x^{3} - x^{2} e^{x} - 3 x^{2} + 3 x e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________