Optimal. Leaf size=27 \[ \frac {e^8+\log (5)}{3 \left (x+\log \left (e^{5+x} (5-x) x\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^8 \left (5+8 x-2 x^2\right )+\left (5+8 x-2 x^2\right ) \log (5)}{-15 x^3+3 x^4+\left (-30 x^2+6 x^3\right ) \log \left (e^{5+x} \left (5 x-x^2\right )\right )+\left (-15 x+3 x^2\right ) \log ^2\left (e^{5+x} \left (5 x-x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (5+8 x-2 x^2\right ) \left (e^8+\log (5)\right )}{-15 x^3+3 x^4+\left (-30 x^2+6 x^3\right ) \log \left (e^{5+x} \left (5 x-x^2\right )\right )+\left (-15 x+3 x^2\right ) \log ^2\left (e^{5+x} \left (5 x-x^2\right )\right )} \, dx\\ &=\left (e^8+\log (5)\right ) \int \frac {5+8 x-2 x^2}{-15 x^3+3 x^4+\left (-30 x^2+6 x^3\right ) \log \left (e^{5+x} \left (5 x-x^2\right )\right )+\left (-15 x+3 x^2\right ) \log ^2\left (e^{5+x} \left (5 x-x^2\right )\right )} \, dx\\ &=\left (e^8+\log (5)\right ) \int \frac {-5-8 x+2 x^2}{3 (5-x) x \left (x+\log \left (-e^{5+x} (-5+x) x\right )\right )^2} \, dx\\ &=\frac {1}{3} \left (e^8+\log (5)\right ) \int \frac {-5-8 x+2 x^2}{(5-x) x \left (x+\log \left (-e^{5+x} (-5+x) x\right )\right )^2} \, dx\\ &=\frac {1}{3} \left (e^8+\log (5)\right ) \int \left (-\frac {2}{\left (x+\log \left (-e^{5+x} (-5+x) x\right )\right )^2}-\frac {1}{(-5+x) \left (x+\log \left (-e^{5+x} (-5+x) x\right )\right )^2}-\frac {1}{x \left (x+\log \left (-e^{5+x} (-5+x) x\right )\right )^2}\right ) \, dx\\ &=\frac {1}{3} \left (-e^8-\log (5)\right ) \int \frac {1}{(-5+x) \left (x+\log \left (-e^{5+x} (-5+x) x\right )\right )^2} \, dx+\frac {1}{3} \left (-e^8-\log (5)\right ) \int \frac {1}{x \left (x+\log \left (-e^{5+x} (-5+x) x\right )\right )^2} \, dx-\frac {1}{3} \left (2 \left (e^8+\log (5)\right )\right ) \int \frac {1}{\left (x+\log \left (-e^{5+x} (-5+x) x\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 26, normalized size = 0.96 \begin {gather*} \frac {e^8+\log (5)}{3 \left (x+\log \left (-e^{5+x} (-5+x) x\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 25, normalized size = 0.93 \begin {gather*} \frac {e^{8} + \log \relax (5)}{3 \, {\left (x + \log \left (-{\left (x^{2} - 5 \, x\right )} e^{\left (x + 5\right )}\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 24, normalized size = 0.89 \begin {gather*} \frac {e^{8} + \log \relax (5)}{3 \, {\left (2 \, x + \log \left (-x^{2} + 5 \, x\right ) + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.17, size = 476, normalized size = 17.63
method | result | size |
risch | \(-\frac {2 i \ln \relax (5)}{3 \left (\pi \,\mathrm {csgn}\left (i {\mathrm e}^{5+x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{5+x} \left (x -5\right )\right )^{2}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{5+x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{5+x} \left (x -5\right )\right ) \mathrm {csgn}\left (i \left (x -5\right )\right )-\pi \mathrm {csgn}\left (i {\mathrm e}^{5+x} \left (x -5\right )\right )^{3}+\pi \mathrm {csgn}\left (i {\mathrm e}^{5+x} \left (x -5\right )\right )^{2} \mathrm {csgn}\left (i \left (x -5\right )\right )+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{5+x} \left (x -5\right )\right ) \mathrm {csgn}\left (i x \left (x -5\right ) {\mathrm e}^{5+x}\right )^{2}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{5+x} \left (x -5\right )\right ) \mathrm {csgn}\left (i x \left (x -5\right ) {\mathrm e}^{5+x}\right ) \mathrm {csgn}\left (i x \right )+\pi \mathrm {csgn}\left (i x \left (x -5\right ) {\mathrm e}^{5+x}\right )^{3}-2 \pi \mathrm {csgn}\left (i x \left (x -5\right ) {\mathrm e}^{5+x}\right )^{2}+\pi \mathrm {csgn}\left (i x \left (x -5\right ) {\mathrm e}^{5+x}\right )^{2} \mathrm {csgn}\left (i x \right )+2 \pi -2 i \ln \left ({\mathrm e}^{5+x}\right )-2 i x -2 i \ln \left (x -5\right )-2 i \ln \relax (x )\right )}-\frac {2 i {\mathrm e}^{8}}{3 \left (\pi \,\mathrm {csgn}\left (i {\mathrm e}^{5+x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{5+x} \left (x -5\right )\right )^{2}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{5+x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{5+x} \left (x -5\right )\right ) \mathrm {csgn}\left (i \left (x -5\right )\right )-\pi \mathrm {csgn}\left (i {\mathrm e}^{5+x} \left (x -5\right )\right )^{3}+\pi \mathrm {csgn}\left (i {\mathrm e}^{5+x} \left (x -5\right )\right )^{2} \mathrm {csgn}\left (i \left (x -5\right )\right )+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{5+x} \left (x -5\right )\right ) \mathrm {csgn}\left (i x \left (x -5\right ) {\mathrm e}^{5+x}\right )^{2}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{5+x} \left (x -5\right )\right ) \mathrm {csgn}\left (i x \left (x -5\right ) {\mathrm e}^{5+x}\right ) \mathrm {csgn}\left (i x \right )+\pi \mathrm {csgn}\left (i x \left (x -5\right ) {\mathrm e}^{5+x}\right )^{3}-2 \pi \mathrm {csgn}\left (i x \left (x -5\right ) {\mathrm e}^{5+x}\right )^{2}+\pi \mathrm {csgn}\left (i x \left (x -5\right ) {\mathrm e}^{5+x}\right )^{2} \mathrm {csgn}\left (i x \right )+2 \pi -2 i \ln \left ({\mathrm e}^{5+x}\right )-2 i x -2 i \ln \left (x -5\right )-2 i \ln \relax (x )\right )}\) | \(476\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 22, normalized size = 0.81 \begin {gather*} \frac {e^{8} + \log \relax (5)}{3 \, {\left (2 \, x + \log \relax (x) + \log \left (-x + 5\right ) + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.80, size = 29, normalized size = 1.07 \begin {gather*} \frac {\frac {{\mathrm {e}}^8}{3}+\frac {\ln \relax (5)}{3}}{x+\ln \left ({\mathrm {e}}^5\,{\mathrm {e}}^x\,\left (5\,x-x^2\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 24, normalized size = 0.89 \begin {gather*} \frac {\log {\relax (5 )} + e^{8}}{3 x + 3 \log {\left (\left (- x^{2} + 5 x\right ) e^{x + 5} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________