Optimal. Leaf size=33 \[ \frac {-1+2 x+e^4 x+5 \left (-x+\frac {1}{8} e^{-x} x^2\right )}{\log (5)} \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 31, normalized size of antiderivative = 0.94, number of steps used = 10, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {12, 6688, 2196, 2176, 2194} \begin {gather*} \frac {5 e^{-x} x^2}{8 \log (5)}-\frac {\left (3-e^4\right ) x}{\log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int e^{-x} \left (e^x \left (-24+8 e^4\right )+10 x-5 x^2\right ) \, dx}{8 \log (5)}\\ &=\frac {\int \left (-24+8 e^4-5 e^{-x} (-2+x) x\right ) \, dx}{8 \log (5)}\\ &=-\frac {\left (3-e^4\right ) x}{\log (5)}-\frac {5 \int e^{-x} (-2+x) x \, dx}{8 \log (5)}\\ &=-\frac {\left (3-e^4\right ) x}{\log (5)}-\frac {5 \int \left (-2 e^{-x} x+e^{-x} x^2\right ) \, dx}{8 \log (5)}\\ &=-\frac {\left (3-e^4\right ) x}{\log (5)}-\frac {5 \int e^{-x} x^2 \, dx}{8 \log (5)}+\frac {5 \int e^{-x} x \, dx}{4 \log (5)}\\ &=-\frac {5 e^{-x} x}{4 \log (5)}-\frac {\left (3-e^4\right ) x}{\log (5)}+\frac {5 e^{-x} x^2}{8 \log (5)}+\frac {5 \int e^{-x} \, dx}{4 \log (5)}-\frac {5 \int e^{-x} x \, dx}{4 \log (5)}\\ &=-\frac {5 e^{-x}}{4 \log (5)}-\frac {\left (3-e^4\right ) x}{\log (5)}+\frac {5 e^{-x} x^2}{8 \log (5)}-\frac {5 \int e^{-x} \, dx}{4 \log (5)}\\ &=-\frac {\left (3-e^4\right ) x}{\log (5)}+\frac {5 e^{-x} x^2}{8 \log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 24, normalized size = 0.73 \begin {gather*} \frac {x \left (-24+8 e^4+5 e^{-x} x\right )}{8 \log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 4.39, size = 28, normalized size = 0.85 \begin {gather*} \frac {{\left (5 \, x^{2} + 8 \, {\left (x e^{4} - 3 \, x\right )} e^{x}\right )} e^{\left (-x\right )}}{8 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 24, normalized size = 0.73 \begin {gather*} \frac {5 \, x^{2} e^{\left (-x\right )} + 8 \, x e^{4} - 24 \, x}{8 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 25, normalized size = 0.76
method | result | size |
default | \(\frac {-24 x +5 x^{2} {\mathrm e}^{-x}+8 x \,{\mathrm e}^{4}}{8 \ln \relax (5)}\) | \(25\) |
norman | \(\left (\frac {\left ({\mathrm e}^{4}-3\right ) x \,{\mathrm e}^{x}}{\ln \relax (5)}+\frac {5 x^{2}}{8 \ln \relax (5)}\right ) {\mathrm e}^{-x}\) | \(28\) |
risch | \(\frac {x \,{\mathrm e}^{4}}{\ln \relax (5)}-\frac {3 x}{\ln \relax (5)}+\frac {5 x^{2} {\mathrm e}^{-x}}{8 \ln \relax (5)}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 38, normalized size = 1.15 \begin {gather*} \frac {8 \, x e^{4} + 5 \, {\left (x^{2} + 2 \, x + 2\right )} e^{\left (-x\right )} - 10 \, {\left (x + 1\right )} e^{\left (-x\right )} - 24 \, x}{8 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 20, normalized size = 0.61 \begin {gather*} \frac {x\,\left (8\,{\mathrm {e}}^4+5\,x\,{\mathrm {e}}^{-x}-24\right )}{8\,\ln \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 22, normalized size = 0.67 \begin {gather*} \frac {5 x^{2} e^{- x}}{8 \log {\relax (5 )}} + \frac {x \left (-3 + e^{4}\right )}{\log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________